Job/Unit: O30051
/KAP1
Date: 09-04-13 16:24:33
Pages: 10
M. F. Cuccarese, H.-Y. L. Wang, G. A. O’Doherty
FULL PAPER
1 H), 4.52 (d, J = 11.8 Hz, 1 H), 4.16 (d, J = 12.2 Hz, 1 H), 3.99
(s, 1 H), 3.89 (d, J = 7.2 Hz, 1 H), 3.75 (d, J = 7.9 Hz, 1 H), 3.62
(t, J = 9.5 Hz, 1 H), 2.89 (s, 3 H), 2.14 (s, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 172.4, 137.1, 128.8, 128.3, 128.3, 99.3, 71.7,
70.8, 69.6, 67.8, 63.9, 21.2 ppm. HRMS (ESI): calcd. for
[C15H21O7]+ 313.1287; found 313.1293.
(m, 5 H, Ar), 5.32 (dd, J = 9.9, 3.4 Hz, 1 H, CH), 5.26 (dd, J =
3.3, 1.7 Hz, 1 H, CH), 4.86 (d, J = 1.5 Hz, 1 H, CH), 4.68 (d, J =
11.9 Hz, 1 H, CH), 4.54 (d, J = 11.9 Hz, 1 H, CH), 4.30 (d, J =
3.4 Hz, 2 H, CH2), 3.82 (dd, J = 19.6, 9.6 Hz, 1 H, CH), 3.78–3.73
(m, 1 H, CH), 2.14 (s, 3 H, Ac), 2.13 (s, 3 H, Ac), 2.07 (s, 3 H,
Ac) ppm. 13C NMR (100 MHz, CDCl3): δ = 170.8, 170.0, 169.7,
136.4, 128.8, 128.5, 128.4, 97.0, 70.8, 70.0, 69.1, 69.1, 63.4, 57.3,
21.0, 20.9 ppm. HRMS (ESI): calcd. for [C19H23N3O8Na]+
444.1388; found 444.1392.
L-Idopyranoside Pentaacetate 7b and L-Mannopyranoside Pentaacet-
ate 13b: Epoxide 3b (89 mg, 0.351 mmol) was added to a 25 mL
round-bottomed flask and dissolved in acetonitrile (5 mL). A 2 m
NaOH solution (2 mL) was added and the reaction was heated to
90 °C in an oil bath. After stirring for 48 h, the reaction was deter-
mined complete by TLC and the solvents were removed under re-
duced pressure. The crude product was dissolved in pyridine
(50 μL, 0.63 mmol) followed by the addition of acetic anhydride
(0.5 mL, 5 mmol). After stirring at room temp. for 2 h, the reaction
was extracted with ethyl acetate (4ϫ 5 mL), dried with Na2SO4,
and concentrated under reduced pressure. The crude product was
purified by silica gel flash chromatography eluting with a gradient
of 20 to 50% ethyl acetate in hexanes to give peracylated idose and
mannose as a mixture of isomers in a 1:3 ratio, respectively (91 mg,
0.208 mmol, 59%), as a colorless oil. The resulting triols were im-
mediately converted to pentaacetates for characterization. Neither
the triols nor the pentaacetates could be separated. Rf (50% EtOAc
3-Azido-idose 8b: Rf (20% EtOAc in hexanes) = 0.78. [α]2D5 = –51
(c = 0.08, CH Cl ). IR (thin film): ν = 2111, 1742, 1368, 1212,
˜
2
2
1
1131, 1072, 909, 739, 699 cm–1. H NMR (400 MHz, CDCl3): δ =
7.42–7.29 (m, 5 H, Ar), 4.91 (dd, J = 4.2, 2.1 Hz, 1 H, CH), 4.87
(s, 1 H, CH), 4.81 (d, J = 4.1 Hz, 1 H, CH), 4.79 (d, J = 12.0 Hz,
1 H, CH), 4.57 (d, J = 12.1 Hz, 1 H, CH), 4.44–4.36 (m, 1 H, CH),
4.18 (m, 2 H), 3.92 (dd, J = 4.2 Hz, 1 H, CH), 2.13 (s, 3 H, Ac),
2.09 (s, 3 H, Ac), 2.07 (s, 3 H, Ac) ppm. 13C NMR (100 MHz,
CDCl3): δ = 170.7, 170.1, 169.5, 136.7, 128.8, 128.3, 128.1, 96.7,
69.6, 68.2, 67.8, 64.7, 62.4, 57.6, 21.1, 21.0 ppm. HRMS (ESI):
calcd. for [C19H23N3O8Na]+ 444.1383; found 444.1383.
Supporting Information (see footnote on the first page of this arti-
cle): Copies of 1H and 13C NMR spectra for all the new com-
pounds.
in hexanes) = 0.74. [α]2D5 = –41 (c = 2.0, CH Cl ). IR (thin film): ν
˜
2
2
= 1740, 1369, 1213, 1043, 732, 699, 600 cm–1.
Mannose 13b: 1H NMR (400 MHz, CDCl3): δ = 7.39–7.30 (m, 5
H, Ar), 5.37 (dd, J = 10.0, 3.6 Hz, 1 H, CH), 5.29–5.25 (m, 1 H,
CH), 4.89 (m, 2 H, CH), 4.70 (d, J = 12.0 Hz, 1 H, CH), 4.56 (d,
J = 12.0 Hz, 1 H, CH), 4.27 (dd, J = 12.0, 5.0 Hz, 1 H, CH), 4.19
(d, J = 6.0 Hz, 1 H, CH), 4.01–3.95 (m, 1 H, CH), 2.13 (s, 3 H,
Ac), 2.11 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 1.98 (s, 3 H) ppm. 13C
NMR (100 MHz, CDCl3): δ = 170.9–169.4 (4 C), 136.4, 128.8–
127.8 (4 C), 97.0, 70.0, 69.8, 69.4, 68.9, 66.4, 62.6, 21.1, 21.0, 20.9,
20.9 ppm.
Acknowledgments
We are grateful to the National Institutes of Health (NIH)
(GM090259) and the National Science Foundation (NSF) (CHE-
1213596) for the support of this research effort. M. F. C. thanks
the NSF (DGE-0965843) for an IGERT fellowship.
Idose 7b: 1H NMR (400 MHz, CDCl3): δ = 7.39–7.30 (m, 5 H, Ar),
5.31 (s, 1 H, CH), 5.28 (m, 1 H, CH), 5.00 (dd, J = 4.8, 3.6 Hz, 1
H, CH), 4.77 (d, J = 12.0 Hz, 1 H, CH), 4.51 (s, 1 H, CH), 4.47
(ddd, J = 6.4, 2.0 Hz, 1 H, CH), 4.05 (d, J = 2.4 Hz, 2 H, CH2),
4.02 (s, 2 H, CH), 2.12 (s, 3 H, Ac), 2.07 (s, 3 H, Ac), 2.06 (s, 3 H,
Ac), 2.04 (s, 3 H, Ac) ppm. 13C NMR (100 MHz, CDCl3): δ =
170.9, –169.4 (4 C), 137.15, 128.7–127.8 (4 C), 69.49, 67.39, 67.30,
67.01, 64.80, 60.62, 21.28, 21.06, 20.95, 14.42 ppm. HRMS (ESI):
calcd. for [C21H26O10Na]+ 461.1424; found 461.1421.
[1] R. Hevey, A. Morland, C.-C. Ling, J. Org. Chem. 2012, 77,
6760–6772.
[2] S. Z. Choi, H. C. Kwon, S. U. Choi, K. R. Lee, J. Nat. Prod.
2002, 65, 1102–1106.
[3] a) S. Hanessian, T. H. Haskell, J. Org. Chem. 1964, 30, 1080–
1085; R. Hevey, A. Morland, C. C. Ling, J. Org. Chem. 2012,
77, 6760–6772.
[4] a) P. B. Alper, M. Hendrix, P. Sears, C.-H. Wong, J. Am. Chem.
Soc. 1998, 120, 1965–1978; b) J. Tatai, G. Osztrovszky, M.
Kajtár-Peredy, P. Fügedi, Carbohydr. Res. 2008, 343, 596–606.
[5] a) S.-C. Hung, S. R. Thopate, R. Puranik, Carbohydr. Res.
2001, 331, 369–374; b) J. Wang, J. Li, D. Tuttle, J. Y. Takemoto,
C.-W. T. Chang, Org. Lett. 2002, 4, 3997–4000; c) J. Wang, J.
Li, P. G. Czyryca, H. Chang, J. Kao, C.-W. T. Chang, Bioorg.
Med. Chem. Lett. 2004, 14, 4389–4393; d) J.-C. Lee, X.-A. Lu,
S. S. Kulkarni, Y.-S. Wen, S.-C. Hung, J. Am. Chem. Soc. 2004,
126, 476–477; e) J. Tatai, G. Osztrovszky, M. Kajtar-Peredy, P.
Fugedi, Carbohydr. Res. 2008, 343, 596–606; f) G. J. S. Loh-
man, D. K. Hunt, J. A. Hogermeier, P. H. Seeberger, J. Org.
Chem. 2003, 68, 7559–7561; g) J. D. C. Codee, B. Stubba, M.
Schiattarella, H. S. Overkleeft, C. A. A. Van Boeckel, J. H.
Van Boom, G. A. Van Der Marel, J. Am. Chem. Soc. 2005, 127,
3767–3773; h) S. U. Hansen, G. J. Miller, M. Baráth, K. R.
Broberg, E. Avizienyte, G. C. Jayson, J. M. Gardiner, J. Org.
Chem. 2012, 77, 7823–7843; i) S. U. Hansen, M. Baráth,
B. A. B. Salameh, R. G. Pritchard, W. T. Stimpson, J. M. Gar-
diner, G. C. Jayson, Org. Lett. 2009, 11, 4528–4531.
3-Azido-D-idose-2,3,6-triacetate (8b) and 3-Azido-D-mannose-2,3,6-
triacetate (14b): Epoxide 4b (10 mg, 40 μmol) was added to a 10 g
screw-cap vial and dissolved in DMF/H2O (1:1, 0.2 mL total vol.).
Solid NaN3 (15 mg, 0.198 mmol) was then added at room temp.
and the mixture was heated to 50 °C and stirred overnight. It was
then extracted with ethyl acetate (3ϫ 2 mL), dried with Na2SO4,
and concentrated under reduced pressure. The crude product was
dissolved in dichloromethane (0.2 mL) followed by the addition of
acetic anhydride (0.3 mL, 3.2 mmol), triethylamine (0.2 mL,
1.4 mmol), and 4-(dimethylamino)pyridine (5 mg, 0.040 mmol),
and the mixture stirred for 3 h. The reaction was extracted with
ethyl acetate (3ϫ 2 mL), dried with Na2SO4, and concentrated un-
der reduced pressure. The crude product was purified by silica gel
flash chromatography eluting with a gradient of 10 to 20% ethyl
acetate in hexanes to give 4-azido-mannose and 3-azido-idose in a
2:1 ratio of isomers (13.6 mg, 0.0323 mmol, 81%) as colorless oils.
[6] L. Ermolenko, N. A. Sasaki, J. Org. Chem. 2006, 71, 693–703.
[7] a) M. H. Haukaas, G. A. O’Doherty, Org. Lett. 2001, 3, 3899–
3902; b) M. L. Bushey, M. H. Haukaas, G. A. O’Doherty, J.
Org. Chem. 1999, 64, 2984–2985.
4-Azido-mannose 14b: Rf (50% EtOAc in hexanes) = 0.68. [α]2D5
–28 (c = 0.05, CH Cl ). IR (thin film): ν = 2925, 2109, 1743, 1371,
=
˜
2
2
1227, 1044, 699 cm–1. H NMR (400 MHz, CDCl3): δ = 7.40–7.27
1
8
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0