3
O
HO P
Pr
O
P
O
+
Ph
H2N Ph
CHO
HO
O
O
P
O
Pr
Pr
(EtO)3P
Ph CH
"T3P H2O"
P(OEt)3
(EtO)2P
O CH2CH3
Ph CH NH Ph
Ph CH
N
Ph
N Ph
-H2O
9
Ph CH NH Ph
6
7
10
11
T3P
O
O
P
O
"T3P EtOH"
12
-
HO P
O
O
P
OH
O
P
O
P
O
Pr
Pr
Pr
Pr
O
O
P
OH
(EtO)2P
O
9 (T3P H2O)
O
Pr
Pr
Ph CH
Ph CH
NH Ph
NHPh
3a
8
Scheme 3. Mechanism for the T3P-catalyzed condensation reacion of benzaldehyde and aniline.
6. Emsley, J.; Hall, D. Chemistry of Phosphorus; Harper & Row:
London, 1976, pp 494.
Three α-aminophosphonates 3a, 3d and 3g were also prepared
using diethyl phosphite instead of triethyl phosphite.44 The
reaction time was twice as long (10 min) as that with triethyl
phosphite. The products 3a, 3d and 3g were obtained in yields of
92%, 94%, and 98%, respectively.
A possible mechanism for the T3P-promoted Kabachnik–
Fields reaction is suggested in Scheme 3. In the first stage of this
reaction an imine 7 is formed from the benzaldehyde and the
aniline via adduct 6. This condensation reaction may be
promoted by T3P to afford imine 7 along with P,P',P''-tripropyl
triphosphonic acid (―T3P·H2O‖) (9) as the by-product. The
dehydration may take place via adduct 8. In the next step, the
imine 7 reacts with triethyl phosphite in a nucleophilic addition,
and after protonation by T3P·H2O (9), the phosphonium salt 11
formed is stabilized by an Arbuzov fission to furnish α-
aminophosphonate 3a and T3P·EtOH (12) as the by-product.
7. (a) Hirschmann, R.; Smith III, A. B.; Taylor, C. M.; Benkovic, P.
A.; Taylor, S. D.; Yager, K. M.; Sprengler, P. A.; Venkovic, S. J.
Science 1994, 264, 234; (b) Smith III, A. B.; Taylor, C. M.;
Benkovic, S. J.; Hirschmann, R. Tetrahedron Lett. 1994, 35, 6853.
8. (a) Kukhar, V. P.; Solodenko, V. A. Russ. Chem. Rev. (Engl.
Transl.) 1987, 56, 859; (b) Laschat, S.; Kunz, H. Synthesis 1992,
90; (c) Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211.
(d) Matveeva, E. D.; Podrugina, T. A.; Tishkovskaya, E. V.;
Tomilova, L. G.; Zefirov, N. S. Synlett 2003, 2321. (e) Pavlov, V.
Ya.; Kabachinik, M. M.; Zobnina, E. V.; Ponomarev, G. V.;
Beletskaya, I. P. Synlett 2003, 2193. (f) Van Meenen, E.; Moonen,
K.; Acke, D.; Stevens, C. V. ARKIVOC 2006, (i), 31-45 and refs.
therein.
9. (a) Kabachnik, M.I.; Medved, T.Y. Dokl. Akad. Nauk SSSr 1952,
83, 689; Chem. Abstr. 1953, 47, 2724b; (b) Fields, E.K. J. Am.
Chem. Soc. 1952, 74, 1528; (c) Keglevich, G.; Bálint E. Molecules
2012, 17, 12821; (d) Zefirov, N.S.; Matveeva, E.D. ARKIVOC
2008, (i), 1.
10. Akiyama, T.; Sanada, M.; Fuchibe, K. Synlett 2003, 1463.
11. Qian, C.; Huang, T. J. Org. Chem. 1998, 63, 4125.
12. Gallardo-Macias, R.; Nakayama, K. Synthesis 2010, 57.
13. Xu, F.; Luo, Y.; Deng, M.; Shen, Q. Eur. J. Org. Chem. 2003,
4728.
14. Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.
15. Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narsihmulu,
C. Tetrahedron Lett. 2001, 42, 5561.
In summary, a convenient and efficient method has been
developed for the synthesis of α-aminophosphonates via the
T3P-promoted Kabachnik–Fields reaction using triethyl
phosphite as the P-containing reagent. The advantages of this
method comprise mild reaction conditions, short reaction times,
and high yields.
16. Paraskar, A. S.; Sudalai, A. ARKIVOC 2006, (x), 183.
17. Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669.
18. (a) Zon, J. Pol. J. Chem. 1981, 55, 643; (b) Lashat, S.; Kunz, H.
Synthesis 1992, 90.
19. Yadav, J. S.; Reddy, B. V. S.; Madan, C. Synlett 2001, 1131; (b)
Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211; (c)
Kabachnik, M. M.; Zobnina, E. V.; Beletskaya, I. P. Synlett 2005,
1393.
Acknowledgment
This project was supported by the Hungarian Scientific and
Research Fund (OTKA K83118).
Supplementary data
20. Xia, M.; Lu, Y. D. Ultrason. Sonochem. 2007, 14, 235.
21. (a) Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. Green Chem. 2002,
4, 436; (b) Disale, S. T.; Kale, S. R.; Kahandal, S. S.; Srinivasan,
T. G.; Jayaram, R. V. Tetrahedron Lett. 2012, 53, 2277.
22. Keglevich, G.; Szekrényi, A. Lett. Org. Chem. 2008, 5, 616.
23. (a) Keglevich, G.; Tóth, V. R.; Drahos, L. Heteroatom Chem.
2011, 22, 15; (b) Kiss, N. Z.; Kaszás, A.; Drahos, L.; Mucsi, Z.;
Keglevich, G. Tetrahedron Lett. 2012, 53, 207; (c) Bálint, E.;
Fazekas, E.; Pongrácz, P.; Kollár, L.; Drahos, L.; Holczbauer, T.;
Czugler, M.; Keglevich, G. J. Organomet. Chem. 2012, 717, 75.
24. (a) Wissmann, H.; Kleiner, H.-J. Angew. Chem., Int. Ed. Engl.
1980, 19, 133; (b) Escher, R.; Bünning, P. Angew. Chem., Int. Ed.
Engl. 1986, 25, 277; (c) Schwarz, M. Synlett 2000, 1369; (d)
García, A. L. L. Synlett 2007, 1328.
25. Augustine, J. K.; Bombrun, A.; Mandal, A. B.; Alagarsamy, P.;
Atta, R. N.; Selvam, P. Synthesis 2011, 1477.
26. Augustine, J. K.; Kumar, R.; Bombrun, A.; Mandal, A. B.
Tetrahedron Lett. 2011, 52, 1074.
27. Madhu, C.; Basavaprabhu, Vishwanatha, T. M.; Sureshbabu, V.
V. Tetrahedron Lett. 2012, 53, 1406.
NMR spectral and HR-MS data for all compounds associated
with this article can be found in the online version, at
http://............
References and notes
1. Kukhar, V.P.; Hudson, H.R. (Eds.), Aminophosphonic and
Aminophosphinic Acids: Chemistry and Biological Activity,
Wiley, Chichester, 2000.
2. (a) Giannousis, P. P.; Bartlett, P. A. J. Med. Chem. 1987, 30,
1603; (b) Allen, M. C; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J.
M. J. Med. Chem. 1989, 32, 1652.
3. Kafarski, P.; Lejczak, B. Curr. Med. Chem. Anti-Cancer Agents
2001, 1, 301.
4. Allerberger, F.; Klare, I. J. Antimicrob. Chemother. 1999, 43, 211.
5. Barder, A. Aldrichim. Acta 1988, 21, 15.