Communication
ChemComm
4 A. Matsumoto and K. Maruoka, Bull. Chem. Soc. Jpn., 2021, 94,
513.
5 (a) R. Sakamoto, S. Sakurai and K. Maruoka, Chem. – Eur. J., 2017,
23, 9030; (b) R. Sakamoto, T. Kato, S. Sakurai and K. Maruoka,
Org. Lett., 2018, 20, 1400; (c) S. Sakurai, T. Kato, R. Sakamoto and
K. Maruoka, Tetrahedron, 2019, 75, 172; (d) T. Seihara, S. Sakurai,
T. Kato, R. Sakamoto and K. Maruoka, Org. Lett., 2019, 21, 2477;
(e) Y. Shiozaki, S. Sakurai, R. Sakamoto, A. Matsumoto and
K. Maruoka, Chem. – Asian J., 2020, 15, 573; ( f ) S. Sakurai,
S. Tsuzuki, R. Sakamoto and K. Maruoka, J. Org. Chem., 2020,
85, 3973; (g) S. Sakurai, A. Matsumoto, T. Kano and K. Maruoka,
J. Am. Chem. Soc., 2020, 142, 19017; (h) S. Sakurai, T. Kano and
K. Maruoka, Chem. Commun., 2021, 57, 81.
6 (a) S. Isayama, Bull. Chem. Soc. Jpn., 1990, 63, 1305; (b) T. Tokuyasu,
S. Kunikawa, K. J. McCullough, A. Masuyama and M. Nojima, J. Org.
Chem., 2005, 70, 251; (c) T. G. Driver, J. R. Harris and K. A. Woerpel,
J. Am. Chem. Soc., 2007, 129, 3836; (d) J. R. Harris, M. T. Haynes II,
A. M. Thomas and K. A. Woerpel, J. Org. Chem., 2010, 75, 5083;
(e) S. W. M. Crossley, C. Obradors, R. M. Martinez and R. A. Shenvi,
Chem. Rev., 2016, 116, 8912.
7 For applications of alkylsilyl peroxides under Fe or Ni catalysis, see:
(a) P. Gao, H. Wu, J.-C. Yang and L.-N. Guo, Org. Lett., 2019, 21, 7104;
(b) L. Chen, J.-C. Yang, P. Xu, J.-J. Zhang, X.-H. Duan and L.-N. Guo,
J. Org. Chem., 2020, 85, 7515.
8 (a) H. G. Kuivila, J. F. Reuwer and J. A. Mangravite, J. Am. Chem. Soc.,
1964, 86, 2666; (b) P. A. Cox, A. G. Leach, A. D. Campbell and
G. C. Lloyd-Jones, J. Am. Chem. Soc., 2016, 138, 9145; (c) P. A. Cox,
M. Reid, A. G. Leach, A. D. Campbell, E. J. King and G. C. Lloyd-
Jones, J. Am. Chem. Soc., 2017, 139, 13156.
Scheme 3 (a) A competition experiment. (b) A radical trapping experi-
ment.
a
1H NMR yield using 1,1,2,2-tetrachloroethane as an internal
standard.
9 (a) V. G. Zaitsev, D. Shabashov and O. Daugulis, J. Am. Chem. Soc.,
2005, 127, 13154; (b) L. C. M. Castro and N. Chatani, Chem. Lett.,
2015, 44, 419; (c) S. Rej, Y. Ano and N. Chatani, Chem. Rev., 2020,
120, 1788.
In summary, we have developed a Ni-catalyzed C(sp2)–H
alkylation of N-quinolylbenzamide using alkylsilyl peroxides
as versatile alkyl radical sources. The reaction proceeds via the
cleavage of both C(sp3)–C(sp3) and C(sp2)–H bonds and affords
a wide range of ortho-alkylated N-quinolylbenzamide with
highly functionalized and complex structures. Mechanistic
studies suggest that the reaction involves a radical mechanism.
We gratefully acknowledge financial support via JSPS KAKENHI
Grants JP17H06450 and JP20H04815 (Hybrid Catalysis).
10 (a) Y. Aihara and N. Chatani, J. Am. Chem. Soc., 2013, 135, 5308;
(b) M. S. W. Song, M. S. S. Lackner and L. Ackermann, Angew. Chem.,
Int. Ed., 2014, 53, 2477; (c) X. Cong, Y. Li, Y. Wei and X. Zeng,
Org. Lett., 2014, 16, 3926; (d) Y. Aihara, M. Tobisu, Y. Fukumoto and
N. Chatani, J. Am. Chem. Soc., 2014, 136, 15509; (e) Y. Aihara,
J. Wuelbern and N. Chatani, Bull. Chem. Soc. Jpn., 2015, 88, 438;
( f ) N. Barsu, D. Kalsi and B. Sundararaju, Chem. – Eur. J., 2015,
21, 9364; (g) T. Uemura, M. Yamaguchi and N. Chatani,
Angew. Chem., Int. Ed., 2016, 55, 3162; (h) T. Kubo and N. Chatani,
Org. Lett., 2016, 18, 1698; (i) A. Sasagawa, M. Yamaguchi, Y. Ano and
N. Chatani, Isr. J. Chem., 2017, 57, 964; ( j) J. Li, Z. Zheng, T. Xiao,
P.-F. Xu and H. Wei, Asian J. Org. Chem., 2018, 7, 133; (k) D. Liu,
L. Yu, Y. Yu, Z. Xia, Z. Song, L. Liao, Z. Tan and X. Chen, Eur. J. Org.
Chem., 2019, 6930; (l) R. C. Samanta, J. Struwe and L. Ackermann,
Angew. Chem., Int. Ed., 2020, 59, 14154; (m) N. Lv, S. Yu, C. Hong,
D.-M. Han and Y. Zhang, Org. Lett., 2020, 22, 9308.
11 Y. Zhang, J. Feng and C. J. Li, J. Am. Chem. Soc., 2008, 130, 2900.
12 For selected examples using 2-pyridone as a ligand under transition-
metal catalyzed C–H activation reactions, see: (a) L. Li, M. Zeng and
S. B. Herzon, Angew. Chem., Int. Ed., 2014, 53, 7892; (b) P. Wang,
M. E. Farmer, X. Huo, P. Jain, P.-X. Shen, M. Ishoey, J. E. Bradner,
S. R. Wisniewski, M. D. Eastgate and J.-Q. Yu, J. Am. Chem. Soc.,
2016, 138, 9269; (c) P. Wang, P. Verma, G. Xia, J. Shi, J. X. Qiao,
S. Tao, P. T. W. Cheng, M. A. Poss, M. E. Farmer, K.-S. Yeung and
J.-Q. Yu, Nature, 2017, 551, 489; (d) Z. Fan, K. L. Bay, X. Chen,
Z. Zhuang, H. S. Park, K. Yeung, K. N. Houk and J.-Q. Yu,
Angew. Chem., Int. Ed., 2020, 59, 4770; (e) D. E. Hill, J.-Q. Yu and
D. G. Blackmond, J. Org. Chem., 2020, 85, 13674.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 For selected reviews, see: (a) T. Cernak, K. D. Dykstra, S. Tyagarajan,
P. Vachalb and S. W. Krska, Chem. Soc. Rev., 2016, 45, 546;
(b) B. Wang, M. A. Perea and R. Sarpong, Angew. Chem., Int. Ed.,
2020, 59, 18898.
2 For selected reviews on the activation of C–C bonds, see:
(a) C.-H. Jun, Chem. Soc. Rev., 2004, 33, 610; (b) L. Souillart and
N. Cramer, Chem. Rev., 2015, 115, 9410; (c) G. Fumagalli, S. Stanton
and J. F. Bower, Chem. Rev., 2017, 117, 9404; (d) P. Sivaguru,
Z. Wang, G. Zanoni and X. Bi, Chem. Soc. Rev., 2019, 48, 2615.
3 For selected reviews on the activation of C–H bonds, see: (a) R. Giri,
B.-F. Shi, K. M. Engle, N. Maugel and J.-Q. Yu, Chem. Soc. Rev., 2009,
38, 3242; (b) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang,
A. K. Singh and A. Lei, Chem. Rev., 2017, 117, 9016; (c) Y. Qin,
L. Zhu and S. Luo, Chem. Rev., 2017, 117, 9433; (d) D.-S. Kim,
13 For details of the screening of additives, see the ESI†.
14 A. Yokota, Y. Aihara and N. Chatani, J. Org. Chem., 2014, 79,
11922.
W.-J. Park and C.-H. Jun, Chem. Rev., 2017, 117, 8977; 15 H. G. Yayla, H. Wang, K. T. Tarantino, H. S. Orbe and R. R. Knowles,
(e) P. Gandeepan, T. Mu¨ller, D. Zell, G. Cera, S. Warratz and
L. Ackermann, Chem. Rev., 2019, 119, 2192.
J. Am. Chem. Soc., 2016, 138, 10794.
16 H. M. Omer and P. Liu, J. Am. Chem. Soc., 2017, 139, 9909.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 7942–7945 | 7945