2320
Russ.Chem.Bull., Int.Ed., Vol. 61, No. 12, December, 2012
Milevsky et al.
Nꢀ(4ꢀFluorophenyl)ꢀ1,3,4ꢀthiadiazoleꢀ2ꢀcarboxamide (11b).
Yield 13%, m.p. 181.5—184 C. H NMR (400 MHz, CDCl3),
the N. D. Zelinsky Institute of Organic Chemistry of the
Russian Academy of Sciences.
1
: 9.34 (s, 1 H, H(5´); 9.23 (br.s, 1 H, NH); 7.66—7.73 (m, 2 H,
H(8´), H(12´)); 7.07—7.16 (m, 2 H, H(9´), H(11´)). The
1H NMR spectrum agrees with the literature data.22 MS (EI,
70 eV), m/z (Irel (%)): 223 [M]+ (50), 203 [M – HF]+ (27), 137
[M – C2H2N2S]+ (100).
Nꢀ[2ꢀ(Trifluoromethyl)phenyl]ꢀ1,3,4ꢀthiadiazoleꢀ2ꢀcarboxꢀ
amide (11f). Yield 9%, m.p. 88—90 C. 1H NMR (200 MHz,
DMSOꢀd6), : 7.54—7.85 (m, 4 H, H(9´), H(10´), H(11´),
H(12´); 9.88 (s, 1 H, H(5´)); 10.89 (br.s, 1 H, NH). HRMS.
Found: m/z 296.0071. [M + Na]+. C10H6N3F3OS. Calculated:
M + Na = 296.0076.
We are grateful to V. I. Pol´shakov and E. A. Batuev
for recording the 13C NMR spectra at the Laboratory of
Magnetic Tomography and Spectroscopy of the Faculty
of Fundamental Medicine of the M. V. Lomonosov Mosꢀ
cow State University.
References
1. A. Rauf, M. R. Banday, R. H. Matoo, Acta Chim. Slov.,
2008, 55, 448.
Determination of the crystal structures of samples 3a(I),
3a(II), and 3f. The crystal structures of samples 3a(I), 3a(II),
and 3f were examined by Xꢀray powder diffraction14—16 in
a Guinier—Huber G670 camera with a curved germanium monoꢀ
chromator. The positions of the first 30 peaks on the Xꢀray difꢀ
fraction patterns obtained were refined and used for indexing
with the TREOR90,23 ITO,24 and AUTOX programs.25,26 Samꢀ
ple 3a(II) contained two polymorphs of compound 3a. One of
them was solved from the diffraction pattern of sample 3a(I) and
the other, from the diffraction pattern of sample 3a(II), with
allowance for the presolved first polymorph. Compound 3f conꢀ
tained a small amount of an unidentified impurity manifested by
weak peaks with the interplanar spacings d = 12.969, 12.234,
6.702, 5.874, and 3.276 Å. The crystal structures were solved
using the simulated annealing algorithm27 for the centrosymꢀ
metric space group P21/c. In all three cases, molecular 3D modꢀ
els were constructed by DFT optimization with the Priroda proꢀ
gram.28 The structures were refined by the Rietveld method with
the MRIA program.29 The peak profiles were approximated with
the modified Voigt function.30 The effects of preferential orienꢀ
tation of crystallites (texture) were taken into account in terms
of the March—Dollase formalism.31 Refinement restrictions
included tolerated deviations from the interatomic distances
in the structures and the planar geometry of the rings. The
thermal parameters for the nonꢀhydrogen atoms in 3a(I) and
3f were refined isotropically. Structure 3a(II) was refined usꢀ
ing the diffraction pattern of its sample containing the crystalꢀ
line phases of two polymorphs 3a(I) and 3a(II) in a ratio of 5 : 6.
For this reason, only one isotropic thermal parameter comꢀ
mon to all nonꢀhydrogen atoms was refined for 3a(II) and
the previously determined structural parameters of 3a(I) (atomꢀ
ic coordinates and isotropic thermal parameters) were fixed
in the refinement of 3a(II). The hydrogen atoms were locatꢀ
ed geometrically and not refined. Selected crystallographic paꢀ
rameters and the data collection statistics for structures 3a(I),
3a(II), and 3f are summarized in Table 2. The experimenꢀ
tal powder diffraction patterns and the difference curves
upon the Rietveld refinement are shown in Fig. 5. All crystalloꢀ
graphic data have been deposited with the Cambridge Structural
Database17 (CCDC Nos 884249 (3a(I)), 884250 (3a(II)), and
884251 (3f)).
2. M. Cacic, M. Trkovnik, F. Cacic, E. HasꢀSchon, Molecules,
2006, 11, 134.
3. S. Rollas, . G. Küçükgüzel, Molecules, 2007, 12, 1910.
4. R. Nordfelth, A. M. Kauppi, H. A. Norberg, H. WolfꢀWatz,
M. Elofsson, Infect. Immun., 2005, 73, 3104.
5. C. Hershko, T. E. A. Peto, J. Exp. Med., 1988, 168, 375.
6. P. Melnyk, V. Leroux, C. Sergheraert, P. Grellier, Bioorg.
Med. Chem. Lett., 2006, 16, 31.
7. P. Kova íková, Z. Mrkvi ková, J. Klimeš, J. Pharm. Biomed.
Anal., 2008, 47, 360.
8. V. N. Yarovenko, E. S. Zayakin, M. M. Krayushkin, V. V.
Zorina, L. N. Kapotina, N. A. Zigangirova, J. Chem. Chem.
Engin., 2010, 4, 56.
9. P. Kova íková, K. Vávrová, K. Tomalová, M. Schöngut,
K. Hrušková, P. Hašková, J. Klimeš, J. Pharm. Biomed.
Anal., 2008, 48, 295.
10. M. Ca ic´, M. Molnar, B. Šarkanj, E. HasꢀSchön, V. Rajꢀ
kovic´, Molecules, 2010, 15, 6795.
11. A. A. AlꢀAmiery, A. A. Hassan Kadhum, A. B. Mohamad,
Molecules, 2012, 17, 5713.
12. I. Kostova, Curr. Med. Chem. AntiꢀCancer Agents, 2005, 5, 29.
13. V. F. Traven, I. V. Ivanov, V. S. Lebedev, T. A. Chibisova,
B. G. Milevsky, N. P. Solov´eva, V. I. Pol´shakov, G. G.
Aleksandrov, O. N. Kazheva, O. A. D´yachenko, Russ. Chem.
Bull. (Int. Ed.), 2010, 59, 1605 [Izv. Akad. Nauk, Ser. Khim.,
2010, 1565].
14. V. V. Chernyshev, Russ. Chem. Bull. (Int. Ed.), 2001, 50,
2273 [Izv. Akad. Nauk, Ser. Khim., 2001, 2171].
15. K. D. M. Harris, E. Y. Cheung, Chem. Soc. Rev., 2004,
33, 526.
16. W. I. F. David, K. Shakland, Acta Crystallogr., Sect. A, 2008,
A64, 52.
17. F. N. Allen, Acta Crystallogr., Sect. B, 2002, B58, 380.
18. V. N. Yarovenko, A. V. Shirokov, I. V. Zavarzin, O. N. Kruꢀ
pinova, A. V. Ignatenko, M. M. Krayushkin, Khim. Geteroꢀ
tsikl. Soedin., 2003, 1855 [Chem. Heterocycl. Compd.
(Engl. Transl.), 2003, 39].
19. V. N. Nikolaev, S. I. Yakimovich, N. V. Koshmina, K. N.
Zelenin, V. V. Alekseev, V. A. Khrustalev, Khim. Geterotsikl.
Soedin., 1983, 1048 [Chem. Heterocycl. Compd. (Engl. Transl.),
1983, 19].
20. S. I. Yakimovich, K. N. Zelenin, V. N. Nikolaev, N. V.
Koshmina, V. V. Alekseev, V. A. Khrustalev, Zh. Org. Khim.,
1983, 19, 1875 [J. Org. Chem. USSR, 1983, 19].
21. P. A. Belyakov, V. I. Kadentsev, A. O. Chizhov, N. G. Koloꢀ
tyrkina, A. S. Shashkov, V. P. Ananikov, Mendeleev Comꢀ
mun., 2010, 20, 125.
Highꢀ and lowꢀresolution mass spectra were measured
at the Section of Structural Studies of the N. D. Zelinsky
Institute of Organic Chemistry of the Russian Academy of
Sciences. Elemental analysis was performed at the Laboꢀ
ratory for Microanalysis and Electrochemical Research of