Job/Unit: O30927
/KAP1
Date: 16-07-13 19:15:12
Pages: 6
Preparation of Peptide Thioesters by Fmoc-Based SPPS
72, 249; c) R. David, M. P. O. Richter, A. G. Beck-Sickinger,
Conclusions
Eur. J. Biochem. 2004, 271, 663; d) V. Muralidharan, T. W.
Muir, Nat. Methods 2006, 3, 429; e) M. Vila-Perelló, T. W.
Muir, Cell 2010, 143, 191.
a) T. Wieland, E. Bokelmann, L. Bauer, H. U. Lang, H. Lau,
Justus Liebigs Ann. Chem. 1953, 583, 129; b) E. C. B. Johnson,
S. B. H. Kent, J. Am. Chem. Soc. 2006, 128, 6640.
A general Fmoc SPPS based method for the synthesis of
peptide thioesters was developed, and the applied amino
thioester building blocks were synthesized for all the corre-
sponding 20 proteinogenic amino acids. An advantage of
using amino ethyl thioester building blocks in the synthesis
of peptide thioesters is that direct handling of foul-smelling
thiols is avoided. It is believed that an important feature
of the described method is that the fully protected peptide
thioesters are purified by normal-phase chromatography to
remove the byproducts from the coupling reagents, as these
significantly hamper the generation of the subsequent un-
protected peptide thioester. We also attempted direct cou-
pling of free thiols with the C termini of the peptides, as
previously reported,[17b,27] but this did not provide the de-
sired peptide thioesters.
A primary objective was to generate peptide thioesters
with acid-labile PTMs such as glycosylations and phos-
phorylations, which are generally not attainable even by
Boc SPPS. This was demonstrated by the straightforward
synthesis of two peptide thioesters containing these impor-
tant PTMs. The glycopeptide thioesters were subsequently
used in a NCL to provide a 24-mer glycopeptide. Fully pro-
tected peptide thioesters can easily be solubilized in organic
solvents, which allows easy handling and purification of the
peptide derivatives in organic media.
[3]
[4]
[5]
V. Y. Torbeev, S. B. H. Kent, Angew. Chem. 2007, 119, 1697;
Angew. Chem. Int. Ed. 2007, 46, 1667.
a) G. G. Kochendoerfer, S. Y. Chen, F. Mao, S. Cressman, S.
Traviglia, H. Shao, C. L. Hunter, D. W. Low, E. N. Cagle, M.
Carnevali, V. Gueriguian, P. J. Keogh, H. Porter, S. M. Strat-
ton, M. C. Wiedeke, J. Wilken, J. Tang, J. J. Levy, L. P. Mi-
randa, M. M. Crnogorac, S. Kalbag, P. Botti, J. Schindler-Hor-
vat, L. Savatski, J. W. Adamson, A. Kung, S. B. H. Kent, J. A.
Bradburne, Science 2003, 299, 884; b) P. Wang, S. Dong, J. A.
Brailsford, K. Iyer, S. D. Townsend, Q. Zhang, R. C. Hendrick-
son, J. Shieh, M. A. Moore, S. J. Danishefsky, Angew. Chem.
2012, 124, 11744; Angew. Chem. Int. Ed. 2012, 51, 11576.
a) F. I. Valiyaveetil, M. Sekedat, T. W. Muir, R. MacKinnon,
Angew. Chem. 2004, 116, 2558; Angew. Chem. Int. Ed. 2004,
43, 2504; b) F. I. Valiyaveetil, M. Leonetti, T. W. Muir, R.
MacKinnon, Science 2006, 314, 1004.
a) R. K. McGinty, J. Kim, C. Chatterjee, R. G. Roeder, T. W.
Muir, Nature 2008, 453, 812; b) B. Fierz, C. Chatterjee, R. K.
McGinty, M. Bar-Dagan, D. P. Raleigh, T. W. Muir, Nat.
Chem. Biol. 2011, 7, 113; c) B. Fierz, T. W. Muir, Nat. Chem.
Biol. 2012, 8, 417.
a) H. Hojo, S. Aimoto, Bull. Chem. Soc. Jpn. 1991, 64, 111; b)
H. Hojo, Y. Kwon, Y. Kakuta, S. Tsuda, I. Tanaka, K. Hikichi,
S. Aimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2700; c) T. M. Hack-
eng, J. H. Griffin, P. E. Dawson, Proc. Natl. Acad. Sci. USA
1999, 96, 10068.
[6]
[7]
[8]
[9]
F. Mende, O. Seitz, Angew. Chem. 2011, 123, 1266; Angew.
Chem. Int. Ed. 2011, 50, 1232.
Experimental Section
[10]
a) J. Alsina, T. S. Yokum, F. Albericio, G. Barany, J. Org.
Chem. 1999, 64, 8761; b) K. Nakamura, N. Hanai, M. Kanno,
A. Kobayashi, Y. Ohnishi, Y. Ito, Y. Nakahara, Tetrahedron
Lett. 1999, 40, 515.
a) D. Swinnen, D. Hilvert, Org. Lett. 2000, 2, 2439; b) J. Brask,
F. Albericio, K. J. Jensen, Org. Lett. 2003, 5, 2951.
R. Ingenito, E. Bianchi, D. Fattori, A. Pessi, J. Am. Chem. Soc.
1999, 121, 11369.
a) B. Wu, J. H. Chen, J. D. Warren, G. Chen, Z. H. Hua, S. J.
Danishefsky, Angew. Chem. 2006, 118, 4222; Angew. Chem. Int.
Ed. 2006, 45, 4116; b) R. Okamoto, K. Morooka, Y. Kajihara,
Angew. Chem. 2012, 124, 195; Angew. Chem. Int. Ed. 2012, 51,
191.
a) J. D. Warren, J. S. Miller, S. J. Keding, S. J. Danishefsky, J.
Am. Chem. Soc. 2004, 126, 6576; b) G. Chen, J. D. Warren, J.
Chen, B. Wu, Q. Wan, S. J. Danishefsky, J. Am. Chem. Soc.
2006, 128, 7460.
a) S. Futaki, K. Sogawa, J. Maruyama, T. Asahara, M. Niwa,
H. Hojo, Tetrahedron Lett. 1997, 38, 6237; b) S. Ficht, R. J.
Payne, R. T. Guy, C. H. Wong, Chem. Eur. J. 2008, 14, 3620.
D. Lelièvre, P. Barta, V. Aucagne, A. F. Delmas, Tetrahedron
Lett. 2008, 49, 4016.
a) J. W. Wehner, T. K. Lindhorst, Synthesis 2010, 3070; b) A. C.
Nagalingam, S. E. Radford, S. L. Warriner, Synlett 2007, 2517.
General Procedure for the Synthesis of Peptide Thioesters: A fully
protected peptide with a free carboxy terminus (0.25 mmol) was
dissolved in a solution of a free amino thioester (H-AA-Set,
0.3 mmol) and DIPEA (0.105 mL, 0.6 mmol) in dichloromethane
(0.7 mL), and the reaction vessel was placed in a freezer at –18 °C.
COMU (0.128 g, 0.3 mmol) was added, and vigorous shaking was
maintained at room temperature for 1 h. The reaction mixture was
separated directly on silica by means of ethyl acetate. An inhomo-
geneous mixture of TFA/TIPS/H2O (18:1:1, 4 mL) was added, and
shaking was maintained for 1 h. After concentration in a gentle
stream of nitrogen, the crude peptide thioester was washed with
cold diethyl ether (3ϫ 5 mL) to give the crude product, which was
successively separated by HPLC to afford the peptide thioester.
[11]
[12]
[13]
[14]
[15]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data, and 1H and
13C NMR spectra of the products.
Acknowledgments
[16]
[17]
[18]
[19]
[20]
[21]
We thank B. Nielsen, University of Copenhagen, for assistance
with chiral HPLC. The Lundbeck Foundation is thanked for finan-
cial support to N. S.-H.
K. N. Barlett, R. V. Kolakowski, S. Katukojvala, L. J. Williams,
Org. Lett. 2006, 8, 823.
R. Bollhagen, M. Schmiedberger, K. Barlos, E. Grell, J. Chem.
Soc., Chem. Commun. 1994, 2559.
J. Coste, M.-N. Dufour, A. Pantaloni, B. Castro, Tetrahedron
Lett. 1990, 31, 669.
a) A. El-Faham, R. S. Funosas, R. Prohens, F. Albericio,
Chem. Eur. J. 2009, 15, 9404; b) A. El-Faham, F. Albericio, J.
Pept. Sci. 2010, 16, 6.
[1] a) P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. H. Kent, Sci-
ence 1994, 266, 776; b) P. E. Dawson, S. B. H. Kent, Annu. Rev.
Biochem. 2000, 69, 923; c) B. L. Nilsson, M. B. Soellner, R. T.
Raines, Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 91; d)
S. B. H. Kent, Chem. Soc. Rev. 2009, 38, 338.
[2] a) T. W. Muir, D. Sondhi, P. A. Cole, Proc. Natl. Acad. Sci.
USA 1998, 95, 6705; b) T. W. Muir, Annu. Rev. Biochem. 2003,
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5