Journal of the American Chemical Society
Communication
the obtained product differs from the starting material only in that it is
enantioenriched; relevant discussions: (a) Turner, N. J. Curr. Opin.
Chem. Biol. 2010, 2, 115. (b) Gruber, C. C.; Lavandera, I.; Faber, K.;
Kroutil, W. Adv. Synth. Catal. 2006, 348, 1789.
(7) (a) Shimada, Y.; Miyake, Y.; Matsuzawa, H.; Nishibayashi, Y.
Chem. Asian J. 2007, 2, 393. (b) Adair, G. R. A.; Williams, J. M. J.
Chem. Commun. 2007, 2608.
(8) (a) Soda, K.; Oikawa, T.; Yokoigawa, K. J. Mol. Catal. B: Enzym.
2001, 11, 149. (b) Carr, R.; Alexeeva, M.; Enright, E.; Eve, T. S. C.;
Dawson, M. J.; Turner, N. J. Angew. Chem. Int. 2003, 42, 4807.
(c) Dunsmore, C. J.; Carr, R.; Fleming, T.; Turner, N. J. J. Am. Chem.
Soc. 2006, 128, 2224. (d) Carr, R.; Alexeeva, M.; Dawson, M. J.;
The development of a single-operation deracemization
enabled by a three-phase system indicates the ability of phase
separation to suppress undesired reactivity: it has allowed us to
develop a class of transformation for which there was no purely
chemical protocol; that it has been used to enable what would
be a minor or fully inaccessible reaction pathway under more
typical reaction conditions (cf. Table 1, entries 1, 2)
demonstrates its efficacy. Future studies aimed at applying
phase separation to develop reaction sequences of incompatible
transformations are ongoing.
Gotor-Fernan
2005, 6, 637. (e) Voss, C. V.; Gruber, C. C.; Faber, K.; Knaus, T.;
Macheroux, P.; Kroutil, W. J. Am. Chem. Soc. 2008, 130, 13969.
́
dez, V.; Humphrey, C. E.; Turner, N. J. ChemBioChem
A
review see: (f) Hall, M.; Bommarius, A. S. Chem. Rev. 2011, 111, 4088.
(9) Enantioenrichment of a racemate based on the physical process
of selective crystallization from solution is known for compounds
which crystallize as enantiopure conglomerates: (a) Kuenburg, B.;
̈
Czollner, L.; Frohlich, J.; Jordis, U. Org. Process Res. Dev. 1999, 3, 425.
(b) Yagishita, F.; Ishikawa, H.; Onuki, T.; Hachiya, S.; Mino, T.;
Sakamoto, M. Ang. Chem. Int. Ed. 2012, 51, 13023.
ASSOCIATED CONTENT
* Supporting Information
Procedures, spectral and X-ray crystallographic data. This
material is available free of charge via the Internet at http://
■
(10) (a) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D.
Science 2011, 334, 1681. (b) Phipps, R. J.; Hiramatsu, K.; Toste, F. D.
J. Am. Chem. Soc. 2012, 134, 8376. (c) Wang, Y.-M.; Wu, J.; Hoong,
C.; Rauniyar, V.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 12928.
(d) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste, F. D. Angew. Chem.,
Int. Ed. 2012, 51, 9684. (e) Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc.
S
AUTHOR INFORMATION
Corresponding Author
■
2013, 135, 1268. (f) Shunatona, H. P.; Fruh, N.; Wang, Y.-M.;
̈
Rauniyar, V.; Toste, F. D. Angew. Chem., Int. Ed. 2013, 52, 7724.
Reviews: (g) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nature Chem.
2012, 4, 603. (h) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013,
52, 534. (i) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52, 518.
(11) (a) Cohen, B. J.; Kraus, M. A.; Patchornik, A. J. Am. Chem. Soc.
1977, 99, 4165. (b) Davies, I. W.; Matty, L.; Hughes, D. L.; Reider, P.
J. J. Am. Chem. Soc. 2001, 123, 10139.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge NIHGMS (RO1 GM104534) for
financial support. A.D.L. was supported by a Dauben
Fellowship from UCB Department of Chemistry. We would
like to thank Dr. Gregory L. Hamilton for helpful discussions,
William J. Wolf for obtaining crystallographic data, and Dr.
Joerg P. Hehn and Ji Lee for experimental assistance.
(12) (a) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed.
2005, 44, 7424. (b) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2006, 128, 84. (c) Li, G.; Liang, Y.; Antilla, J.
C. J. Am. Chem. Soc. 2007, 129, 5830. Relevant recent reviews:
(a) Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852.
(b) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem. 2010, 291,
395. (c) Wang, Z.; Jiang, Z. Asian J. Chem. 2010, 22, 4141.
(13) During the preparation of this manuscript, a report using a chiral
phosphoric acid catalyst and racemic indoline as a reductant led to
highly enantioselective reduction of N-arylimines and concomitant
oxidative kinetic resolution of the indoline: Saito, K.; Shibata, Y.;
Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 11740.
(14) (a) Bobbitt, J. M. J. Org. Chem. 1998, 63, 9367. (b) Qiu, J. C.;
Pradhan, P. P.; Blanck, N. B.; Bobbitt, J. M.; Bailey, W. F. Org. Lett.
2012, 14, 350.
REFERENCES
■
(1) (a) Pellissier, H. Adv. Synth. Catal. 2011, 353, 1613. (a) Fogassy,
E.; Nog
́
rad
́
i, M.; Kozma, D.; Egri, G.; Pal
́
ovics, E.; Kiss, V. Org. Biol.
Chem. 2006, 4, 3011. (b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N.
Adv. Synth. Catal. 2001, 343, 5.
(2) (a) Wolf, C. Dynamic Stereochemistry of Chiral Compounds:
Principles and Application; RSC: London, 2007. (b) Faber, K. Chem.−
Eur. J. 2001, 7, 5004. (c) Steinreiber, J.; Faber, K.; Griengl, H. Chem.−
Eur. J. 2008, 14, 8060.
(3) Dynamic kinetic transformations of secondary alcohols to their
ester-protected forms have been reported chemo-enzymatically:
(15) (a) Rueping, M.; Brinkmann, C.; Antonchick, A. P.; Atodiresei,
I. Org. Lett. 2010, 12, 4604. (b) Rueping, M.; Antonchick, A. P.;
Thiessmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683.
(16) (a) Rueping, M.; Thiessmann, T. Chem. Sci. 2010, 1, 473.
(a) Persson, B. A.; Larsson, A. L. E.; Le Ray, M.; Backvall, J.-E. J.
̈
(b) Scroggins, S. T.; Chi, Y.; Frec
2010, 49, 2393.
́
het, J. M. J. Angew. Chem., Int. Ed.
Am. Chem. Soc. 1999, 121, 1645. (b) Pamies, O.; Backvall, J.-E. Trends
̈
Biotechnol. 2004, 22, 130. (c) Martín-Matute, B.; Backvall, J.-E. In
̈
(17) (a) Li, G.; Antilla, J. C. Org. Lett. 2009, 11, 1075. (b) Rueping,
M.; Azap, C. Angew. Chem., Int. Ed. 2006, 45, 7832.
Organic Synthesis with Enzymes in Non-Aqueous Media; Carrea, G., Riva,
S., Eds.; Wiley-VCH: Weinheim, 2008, pp 113−144. More recently, a
purely chemical variant was reported: (c) Lee, S. Y.; Murphy, J. M.;
Ukai, A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 15149.
(18) Observation that the reaction is faster under acidic conditions
implies that the catalyst may not act as an anionic phase-transfer
catalyst. Preliminary investigations indicate that the oxidation does
proceed more rapidly in the presence of the phosphoric acid, and
further investigations on mechanism are ongoing. Reviews of
phosphoric acid catalysis: (a) Akiyama, T. Chem. Rev. 2007, 107,
5744. (b) Terada, M. Synthesis 2010, 1929.
(4) Chemoenzymatic dynamic kinetic transformations of amines:
(a) Reetz, M. T.; Schimossek, K. Chimia 1996, 50, 668. (b) Paetzold,
J.; Backvall, J.-E. J. Am. Chem. Soc. 2005, 127, 17620. A review:
̈
(c) Kim, Y.; Park, J.; Kim, M.-J. ChemCatChem 2011, 3, 271.
(5) (a) Blackmond, D. G.; Matar, O. K. J. Phys. Chem. B 2008, 112,
5098. (b) Blackmond, D. G. Angew. Chem., Int. Ed. 2009, 48, 2648.
(6) While other definitions exist (for example, see refs 2b, c),
deracemization is used in this context in its strict sense, indicating that
(19) See ref 14b for a discussion of relative rate of oxidation using
oxopiperidinium salts.
14093
dx.doi.org/10.1021/ja4082827 | J. Am. Chem. Soc. 2013, 135, 14090−14093