10.1002/anie.202106526
Angewandte Chemie International Edition
RESEARCH ARTICLE
[14] a) Z. Li, Z. Kong, J. Chen, J. Li, N. Li, Z. Yang, Y. Wang, Z. Liu, Eur. J.
Nucl. Med. Mol. Imaging 2021; b) Z. Liu, H. Chen, K. Chen, Y. Shao, D.
O. Kiesewetter, G. Niu, X. Chen, Sci. Adv. 2015, 1, e1500694.
[15] T. W. W. Greene, P. G. M. , John Wiley & Sons: New York 1991.
[16] J. Rautio, N. A. Meanwell, L. Di, M. J. Hageman, Nat. Rev. Drug
Discovery 2018, 17, 559-587.
[17] D. Motoda, H. Kinoshita, H. Shinokubo, K. Oshima, Angew. Chem., Int.
Ed. Engl. 2004, 43, 1860-1862.
[18] R. Hu, J. Feng, D. Hu, S. Wang, S. Li, Y. Li, G. Yang, Angew. Chem.,
Int. Ed. Engl. 2010, 49, 4915-4918.
[19] a) I. M. Umlong, K. Ismail, Colloids Surf., A 2007, 299, 8-14; b) N.
Scholz, T. Behnke, U. Resch-Genger, J. Fluoresc. 2018, 28, 465-476;
c) S. K. Hait, S. P. Moulik, J. Surfactants Deterg. 2001, 4, 303-309.
[20] X. Ji, C. Zhou, K. Ji, R. E. Aghoghovbia, Z. Pan, V. Chittavong, B. Ke,
B. Wang, Angew. Chem., Int. Ed. Engl. 2016, 55, 15846-15851.
[21] W. M. Haynes, D. R. Lide, CRC handbook of chemistry and physics : a
ready-reference book of chemical and physical data, 91st ed. / ed.,
Boca Raton (Fla.) : CRC Press, 2010.
[22] W. Hu, L. Zeng, Y. Wang, Z. Liu, X. Ye, C. Li, Analyst 2016, 141, 5450-
5455.
[23] Y. Qi, Y. Huang, B. Li, F. Zeng, S. Wu, Anal. Chem. 2018, 90, 1014-
1020.
Quantitative analysis of OH-CPT released in tumors in mice treated by PC7BA
micelles–delivered TBDPSO-CPT+Phe-BF3 and PLGA5k-PEG2k micelles–
delivered TBDPSO-CPT+Phe-BF3, respectively.
In this work, we take DOTAP and PC7BA micelle as the
examples to show that the cationic micelles may function as the
catalyst to remarkably accelerate the desilylation reaction both in
vitro and in vivo. According to the mechanistic study, this catalytic
nature should be applicable for all cationic micelles as well as the
pH-sensitive micelles. Therefore, micelle-catalyzed desilylation
offers an exciting opportunity to tissue-selectively activate
prodrugs without intrinsic tissue-targeting. In addition, inspired by
the fact that many reactions are remarkably faster in organic
solvent or micelles than in water, we expect that micelles would
be versatile to catalyze a broad scope of reactions in vivo.
[24] D. Duan, H. Liu, Y. Xu, Y. Han, M. Xu, Z. Zhang, Z. Liu, ACS Appl.
Mater. Interfaces 2018, 10, 5278-5286.
[25] M. Yu, J. Zheng, ACS Nano 2015, 9, 6655-6674.
Acknowledgment
[26] M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A.
Peppas, R. Langer, Nat. Rev. Drug Discov. 2021, 20, 101-124.
[27] a) T. Volk, E. Jahde, H. P. Fortmeyer, K. H. Glusenkamp, M. F.
Rajewsky, Br. J. Cancer 1993, 68, 492-500; b) K. Zhou, Y. Wang, X.
Huang, K. Luby-Phelps, B. D. Sumer, J. Gao, Angew. Chem., Int. Ed.
Engl. 2011, 50, 6109-6114; c) J. Z. Du, T. M. Sun, W. J. Song, J. Wu, J.
Wang, Angew. Chem., Int. Ed. Engl. 2010, 49, 3621-3626; d) S. S. Han,
Z. Y. Li, J. Y. Zhu, K. Han, Z. Y. Zeng, W. Hong, W. X. Li, H. Z. Jia, Y.
Liu, R. X. Zhuo, X. Z. Zhang, Small 2015, 11, 2543-2554.
This work was financially supported by National Natural Science
Foundation of China (no. NSFC U1867209 and no. NSFC
21778003) and the Ministry of Science and Technology of the
Peoples Republic of China (2017YFA0506300).
Keywords: Micellar catalysis, desilylation, controlled release, in
vivo chemistry
[1]
a) J. A. Prescher, C. R. Bertozzi, Nat. Chem. Biol. 2005, 1, 13-21; b) V.
Kenward, T. Katsunori, in Handbook of In Vivo Chemistry in Mice, 2020,
pp. 309-353; c) Y. Zheng, X. Ji, B. Yu, K. Ji, D. Gallo, E. Csizmadia, M.
Zhu, M. R. Choudhury, L. K. C. De La Cruz, V. Chittavong, Z. Pan, Z.
Yuan, L. E. Otterbein, B. Wang, Nat. Chem. 2018, 10, 787-794; d) R.
Rossin, R. M. Versteegen, J. Wu, A. Khasanov, H. J. Wessels, E. J.
Steenbergen, W. Ten Hoeve, H. M. Janssen, A. van Onzen, P. J.
Hudson, M. S. Robillard, Nat. Commun. 2018, 9, 1484.
[2]
a) L. P. Hammett, Physical organic chemistry; reaction rates, equilibria,
and mechanisms, 1st ed. ed., McGraw-Hill Book Company, Inc., New
York and London, 1940; b) J. Wang, X. Wang, X. Fan, P. R. Chen, ACS
Cent. Sci. 2021.
[3]
[4]
J. Li, P. R. Chen, Nat. Chem. Biol. 2016, 12, 129-137.
a) J. Tu, M. Xu, S. Parvez, R. T. Peterson, R. M. Franzini, J. Am.
Chem. Soc. 2018, 140, 8410-8414; b) J. Kim, C. R. Bertozzi, Angew.
Chem., Int. Ed. Engl. 2015, 54, 15777-15781; c) R. M. Versteegen, R.
Rossin, W. ten Hoeve, H. M. Janssen, M. S. Robillard, Angew. Chem.,
Int. Ed. Engl. 2013, 52, 14112-14116; d) Q. Fu, H. Li, D. Duan, C.
Wang, S. Shen, H. Ma, Z. Liu, Angew. Chem., Int. Ed. Engl. 2020, 59,
21546-21552; e) M. Jiang, H. Li, H. Yang, H. Fu, Angew. Chem., Int.
Ed. Engl. 2017, 56, 874-879; f) Y. Li, Z. Lou, H. Li, H. Yang, Y. Zhao, H.
Fu, Angew. Chem., Int. Ed. Engl. 2020, 59, 3671-3677.
[5]
[6]
Q. Wang, Y. Wang, J. Ding, C. Wang, X. Zhou, W. Gao, H. Huang, F.
Shao, Z. Liu, Nature 2020, 579, 421-426.
L. Su, R. Li, S. Khan, R. Clanton, F. Zhang, Y. N. Lin, Y. Song, H.
Wang, J. Fan, S. Hernandez, A. S. Butters, G. Akabani, R.
MacLoughlin, J. Smolen, K. L. Wooley, J. Am. Chem. Soc. 2018, 140,
1438-1446.
[7]
[8]
M. A. Mintzer, E. E. Simanek, Chem. Rev. 2009, 109, 259-302.
S. Yang, Q. Tang, L. Chen, J. Chang, T. Jiang, J. Zhao, M. Wang, P. R.
Chen, Angew. Chem., Int. Ed. Engl. 2020, 59, 18087-18094.
a) S. Du, S. S. Liew, L. Li, S. Q. Yao, J. Am. Chem. Soc. 2018, 140,
15986-15996; b) M. Zhang, C. C. Song, F. S. Du, Z. C. Li, ACS Appl.
Mater. Interfaces 2017, 9, 25905-25914; c) S. Su, Y. Y. Wang, F. S. Du,
H. Lu, Z. C. Li, Adv Funct Mater 2018, 28, 1805287.
[9]
[10] Q. Cheng, T. Wei, L. Farbiak, L. T. Johnson, S. A. Dilliard, D. J.
Siegwart, Nat. Nanotechnol. 2020, 15, 313-320.
[11] a) H. Cabral, K. Miyata, K. Osada, K. Kataoka, Chem. Rev. 2018, 118,
6844-6892; b) K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek,
R. Zboril, Chem. Rev. 2016, 116, 5338-5431.
[12] a) B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C.
Duplais, A. Krasovskiy, R. D. Gaston, R. C. Gadwood, J. Org. Chem.
2011, 76, 4379-4391; b) S. Klingelhofer, W. Heitz, A. Greiner, S.
Oestreich, S. Forster, M. Antonietti, J. Am. Chem. Soc. 1997, 119,
10116-10120; c) S. Wallace, E. P. Balskus, Angew. Chem., Int. Ed.
Engl. 2016, 55, 6023-6027.
[13] T. Dwars, E. Paetzold, G. Oehme, Angew. Chem., Int. Ed. Engl. 2005,
44, 7174-7199.
7
This article is protected by copyright. All rights reserved.