10.1002/anie.201912618
Angewandte Chemie International Edition
COMMUNICATION
9.
The use of first row transition metals in allylation is mainly limited to 1,3-
dicarbonyls: (a) Alexakis, A.; Begouin, J. M.; Crawley, M. L.; Guiry, P. J.;
Kammerer-Pentier, C.; Kleimark, J.; Klein, J. E M. N.; Langlois, J. –B.; Liron, F.;
Liu, W. –B.; Milhau, L.; Moberg, C.; Norrby, P. –O.; Plietker, B.; Poli, G.; Prestat,
G.; Trost, B. M. Weickmann, D.; Xia, J.–B.; You, S. –L. Transition Metal
Catalyzed Enantioselective Allylic Substitution in Organic Synthesis; Kazmeier,
U., Eds.; Springer, New York, 2012, vol. 38, pp1-341.To our knowledge, there
is only one report with Ni: (b) Wang, J.; Wang, P.; Wang, L.; Li, D.; Wang, K.;
Wang, Y.; Zhu, H.; Yang, D.; Wang, R. Org. Lett. 2017, 19, 4826–4829.
play an important role in determining metal coordination
geometry, leading to tri-dentate NNO Cu coordination by the
ligand. Preliminary mechanistic investigations indicate that a CuI
species is likely the active catalyst, and that the reaction may
proceed through a CuIII[σ+π] intermediate. Future work will focus
on gaining a deeper understanding of the reaction mechanism
and expanding the scope of this reaction to include other enolate
derived nucleophiles.24
10. For other ligands, bases, and copper salts tested, see S6-8, 22.
11. With LiHMDS as the base, the complexation could be carried out at room
temperature, allowing for an operationally simpler reaction set-up. For Cu/L
complexation using different bases, see S8.
Acknowledgements
The NIH-NIGMS (R01GM080269) and Caltech are thanked
for support of our research program. Financial support from
Caltech and the Dow Next Generation Educator Fund is gratefully
acknowledged (R. G. Hadt). C. I. Jette thanks the National
Science Foundation for a predoctoral fellowship. Alexander Q.
Cusumano is thanked for assistance and helpful discussions. Dr.
Scott Virgil is thanked for instrumentation and SFC assistance.
We thank Lawrence Henling for assistance with X-Ray Analysis.
Dr. Mona Shahgholi is acknowledged for mass spectrometry
assistance. Dr. Paul H. Oyala is thanked for his assistance with
EPR spectroscopy. We acknowledge Prof. H. B. Gray for the use
of the Cary 500 UV-vis-NIR spectrophotometer.
12.
(a) Harada, A.; Makida, Y.; Sato, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem.
Soc. 2014, 136, 13932–13939. (b) Yoshikai, N.; Zhang, S.-L.; Nakamura, E. J.
Am. Chem. Soc. 2008, 130, 12862–12863. (c) Yamanaka, M.; Kato, S.;
Nakamura, E. J. Am. Chem. Soc. 2004, 126, 6287–6293. (d) Yoshikai, N.;
Nakamura, E. Chem. Rev. 2012, 112, 2339–2372.
13. (a) Mulqi, M.; Stephens, F. S.; Vagg, R. S. Inorg. Chim. Acta, 1981, 51, 9–14.
(b) Mulqi, M.; Stephens, F. S.; Vagg, R. S. Inorg. Chim. Acta, 1981, 52, 177–
182. (c) Fan, X.; Zhang, X.; Li, C.; Gu, Z. ACS Catal. 2019, 9, 2286–2291. (d)
Carlo Sambiagio. Investigations on the use of Amidic Ligands in Copper-
Catalyzed Arylation Reactions, Ph.D. Dissertation, University of Leeds, Leeds,
West Yorkshire, England, 2015.
14. (a) Trost, B. M.; Dogra, K.; Hachiya, I.; Emura, T.; Hughes, D. L.; Krska, S.;
Reamer, R. A.; Palucki, M.; Yasuda, N.; Reider, P. Angew. Chem. Int. Ed. 2002,
41, 1929–1932, Angew. Chem. 2002, 114, 2009–2012.
15. See S51 for more information.
Keywords: Copper • Allylic Alkylation • Enolate Nucleophiles• γ-
16. Okuniewski, A.; Rosiak, D.; Chojnacki, J.; Becker, B. Polyhedron. 2015, 90, 47–
57.
butyrolactones• Asymmetric Catalysis
17. Although the energy gap between the two binding modes of L2 was smaller
than that of L8, the energy difference was still too large for thermal
interconversion (Table S3).
References
18. We also observed a diamagnetic species by 1HNMR (S234)
19. (a) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97, 2912–2914.
(b) Evans, R. W.; Zbieg, J. R.; Zhu, S.; Li, W.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2013, 135, 16074–16077. (c) Rathke, M.; Lindert, A. J. Am. Chem. Soc.
1971, 93, 4605–4606. (d) Kochi, J. K. J. Am. Chem. Soc. 1955, 77, 5724–5728.
(e) Kosower, E. M.; Cole, W. J.; Wu, G. –S, Cardy, D. E.; Meisters, G. J. Org.
Chem. 1963, 28, 630–633. (f) Kosower, E. M.; Wu, G. –S. J. Org. Chem. 1963,
28, 633–638.
1.
2.
(a) Seitz, M.; Reiser, O. 2005, 9, 285–292. (b) Meyers, A. I.; Yamamoto, Y.;
Mihelich, E. D.; Bell, R. A. J. Org. Chem. 1980, 45, 2792–2796. (c) Madelaine,
C.; Valerio, V.; Maulide, N. Angew. Chem. Int. Ed. 2010, 49, 1583–1586,
Angew. Chem. 2010, 122, 1628–1631. (d) Mao, B.; Fañanás-Mastral, M.;
Feringa, B. L. Chem. Rev. 2017, 117, 10502–10566.
(a) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.;
Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669–685. (b) Evans,
D. A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. 1996, 118, 5814–5815.
(c) Saaby, S.; Nakama, K.; Lie, M. A.; Hazell, R. G.; Jørgensen, K. A. Chem.
Eur. J. 2003, 9, 6145−6154. (d) Huang, Z.; Chen, Z.; Lim, L. H.; Quang, G. C.
P.; Hirao, H.; Zhou, J. Angew. Chem. Int. Ed. 2013, 52, 5807–5812, Angew.
Chem. 2013, 125, 5919 –5924.
20. The NNO binding preference was retained in a number of CuII and CuI
intermediates (Table S4).
21. IR data of our CuI catalyst indicates that the benzamide dissociates upon
exposure to 2. DFT data indicates that a C-bound CuI enolate is lower in energy
than the O-bound enolate (S50).
3.
4.
Tsuji, J.;Takahashi, H.; Morikawa, M. Tetrahedron Lett., 1965, 6, 4387–4388.
(a) James, J.; Guiry, P. J. ACS Catal. 2017, 7, 1397–1402. (b) Nascimiento de
Oliveira, M.; Fournier, J.; Arseniyadis, S.; Cossy, J. A. Org. Lett. 2017, 19, 14–
17. (c) Meletis, P.; Patil, M.; Thiel, W.; Frank, W.; Braun, M. Chem. Eur. J. 2011,
17 , 11243–11249. (d) Jiang, X.; Hartwig, J. F. Angew, Chem. Int. Ed. 2017, 56,
8887–8891. Angew, Chem. 2017, 129, 9013–9017.
22. We believe that oxidative addition to 1v generates a sterically congested
CuIII[σ+π] allyl species which undergoes a 1,3 allyl migration:12a
O
O
Cs
Cs
N
Ph
O
N
Ph
O
H
H
H
Cy
LiO
N
N
O
LiO
N
N
O
CuIII
CuIII
1,3 allyl migration
5.
(a) Ngamnithiporn, A.; Jette, C.; Bachman, S.; Virgil, S.; Stoltz, B. M. Chem.
Sci. 2018, 9, 2547–2551. (b) Hayashi, M.; Bachman, S.; Hashimoto, S.;
Eichman, C. C.; Stoltz, B.M. J. Am. Chem. Soc. 2016, 138, 8997–9000. (c) Han,
S.–J.; Doi, R.; Stoltz, B. M. Angew. Chem. Int. Ed. 2016, 55, 7437–7440,
Angew. Chem. 2016, 128, 7563 –7566.
Cy
23. For other potential applications of chiral α-allyl γ-butyrolactones, see S76.
24. For other nucleophiles tested, see S23.
6.
7.
Li, D.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2011, 133, 5672–5675.
(a) Falciola, C. A.; Alexakis, A. Eur. J. Org. Chem. 2008, 3765–3780. (b)
Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev.
2008, 108, 2796–2823. (c) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.;
Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824–2852.
8.
For Cu(II) catalysts with 1,3-dicarbonyls see (a) Trillo, P.; Baeza, A. Adv. Synth.
Catal. 2017, 359, 1735–1741. (b) Deng, Q.–H.; Wadepohl, H.; Gade, L. H. J.
Am. Chem. Soc. 2012, 134, 2946–2949. Given the large difference in sterics
and reactivity between stabilized and non-stabilized enolates, it is unlikely that
γ-butyrolactones would undergo allylation via a similar pathway.
This article is protected by copyright. All rights reserved.