7926
G. Pandey et al. / Tetrahedron Letters 47 (2006) 7923–7926
Table 1. Enzyme inhibition (Ki in lM) data
H. L. Nature 1987, 330, 74–77; (b) Ratner, L.; Heyden, N.
V.; Dedera, D. Virology 1991, 181, 180–192.
6. Laver, W. G.; Bischofberger, N.; Webster, R. G. Sci. Am.
1999, 78–87.
7. (a) Ganem, B. Acc. Chem. Res. 1996, 29, 340–347; (b)
Sears, P.; Wong, C.-H. Angew. Chem., Int. Ed. 1999, 38,
2300–2324.
Enzyme
9
23
26
b-Galactosidase
a-Galactosidase
b-Glucosidase
a-Glucosidase
b-Mannosidase
a-Mannosidase
172
900
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
n.i.
8. Stutz, A. E. Iminosugars as glycosidase inhibitors: nojiri-
¨
mycin and beyond; Wiley-VCH: Weinheim, 1999.
9. Ichikawa, Y.; Igarashi, Y. Tetrahedron Lett. 1995, 36,
4585–4586.
n.i = no inhibition up to 1 mM.
10. Liu, H.; Liang, X.; Søhoel, H.; Bulow, A.; Bols, M. J. Am.
¨
tionality at C-5 (loss of polarity and a binding site),
unfortunately, did not inhibit any of the enzymes
studied.
Chem. Soc. 2001, 123, 5116–5117.
11. Jensen, H. H.; Bols, M. J. Chem. Soc., Perkin Trans. 1
2001, 905–909.
12. Papandreou, G.; Tong, M. K.; Ganem, B. J. Am. Chem.
Soc. 1993, 115, 11682–11690.
13. Nishimura, Y.; Adachi, H.; Satosh, T.; Shitara, E.;
Nakamura, H.; Kojima, F.; Takeuchi, T. J. Org. Chem.
2000, 65, 4871–4882.
14. Williams, S. J.; Notenboom, V.; Wicki, J.; Rose, D. R.;
Withers, S. G. J. Am. Chem. Soc. 2000, 122, 4229–
4230.
15. Sygula, A. J. Chem. Res. 1989, 56–57.
16. Abrous, L.; Jokiel, P. K.; Friedrich, S. R.; Hynes, J., Jr.;
Smith, A. B., III; Hirsehmann, R. J. Org. Chem. 2004, 69,
280–302.
17. Reddy, B. G.; Vankar, Y. D. Angew. Chem., Int. Ed. 2005,
44, 2001–2004.
18. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.;
Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61,
3849–3862.
19. Pandey, G.; Kapur, M. Synthesis 2001, 1263–1267.
20. (a) Pandey, G.; Kumaraswamy, G.; Bhalerao, U. T.
Tetrahedron Lett. 1989, 30, 6059–6062; (b) Pandey, G.;
Reddy, G. D.; Kumaraswamy, G. Tetrahedron 1994, 50,
8185–8194.
21. CCDC-607587 and CCDC-607588 contain Supplementary
crystallographic data for compounds 17 and 19, respec-
tively. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via http://
The fairly good and specific glycosidase inhibition
exhibited by neutral b-lactam-azasugar hybrid molecule
9 points towards the possibility of improving its potency
further by incorporating minor structural variations. We
are probing this aspect, currently, by incorporating a
hydroxymethylene functionality at C-7 of the b-lactam
ring with the hope that it may provide an additional
H-bonding site for recognition and would also increase
the polarity of the molecule. Furthermore, we are also
synthesizing other possible stereoisomeric analogues of
9 and the results will be disclosed appropriately in a full
letter.
Acknowledgements
We thank Dr. P. R. Rajmohan and Mrs. U. D. Phalgune
for the special NMR experiments. S.G.D. and M.S.
thanks UGC, CSIR, respectively, New Delhi, for the
award of Research Fellowships. Financial support by
the DBT, New Delhi, is gratefully acknowledged.
Supplementary data
22. Maison, W.; Kosten, M.; Charpy, A.; Kintscher-Langen-
hagen, J.; Schlemminger, I.; Lutzen, A.; Westerhoff, O.;
¨
Supplementary data associated with this article can be
Martens, J. Eur. J. Org. Chem. 1999, 2433–2441.
27
23. Data for compound 9: ½aꢁD +19.7 (c 0.25, MeOH);
1H NMR (500 MHz, D2O) d 2.82 (app t, 1H, J = 11.2,
11.6), 3.05–3.12 (br m, 2H), 3.76 (dd, 1H, J = 2.3, 9.7),
3.81–3.85 (m, 1H), 3.90–3.96 (m, 1H), 4.70 (dd, 1H,
J = 6.8, 13.0), 4.24 (aap t, 1H, J = 1.9, 2.3); 13C NMR
(125 MHz, CDCl3) d 37.3 (CH2), 43.2 (CH2), 50.3 (CH),
64.6 (CH), 68.2 (CH), 73.4 (CH), 169.5 (C); MS: 196
(M+Na+, 100%), 174 (MH+, 20%), 155 (18%).
References and notes
1. Mehta, G.; Singh, V. Chem. Soc. Rev. 2002, 31, 324–334,
and references cited therein.
24. Pandey, G.; Kapur, M.; Khan, M. I.; Gaikwad, S. M. Org.
Biomol. Chem. 2003, 1, 3321–3326.
2. Tietze, L. F.; Bell, H. P.; Chandrasekar, S. Angew. Chem.,
Int. Ed. 2003, 42, 3996–4028, and references cited therein.
3. (a) Anzeveno, P. B.; Creemer, L. J.; Daniel, J. K.; King,
C.-H. R.; Liu, P. S. J. Org. Chem. 1989, 54, 2539–2542; (b)
Balfour, J. A.; McTavish, D. Drugs 1993, 46, 1025–1054.
27
25. Data for compound 26: ½aꢁD +15.8 (c 0.18, MeOH); IR (in
CHCl3): 3440, 1750, 1212. cmꢀ1 1H NMR (500 MHz,
;
D2O) d 0.84 (d, 3H, J = 6.6), 1.27–1.36 (m, 1H), 2.46–2.59
(m, 2H), 2.96 [two sets of dd, like ddd, 1H, J = (2.2, 4.4),
(1.6, 4.4) and 14.8], 3.03 (dd, 1H, J = 4.4, 9.9), 3.08 (app t,
1H, J = 9.3, 10.4), 3.30–3.36 (m, 1H), 3.78 (dd, 1H,
J = 6.0, 13.2); 13C NMR (125 MHz, CDCl3) d 12.2 (CH3),
41.7 (CH), 42.2 (CH2), 43.8 (CH2), 52.2 (CH), 70.5 (CH),
76.2 (CH), 169.8 (C); MS: 194 (M+Na+, 100%), 172
(MH+, 15%).
´
4. (a) Zitzmann, N.; Mehta, A. S.; Carrouee, S.; Butters, T.
D.; Platt, F. M.; McCauley, J.; Blumberg, B. S.; Dwek, R.
A.; Block, T. M. PNAS 1999, 96, 11878–11882; (b) Goss,
P. E.; Baptiste, J.; Fernandes, B.; Baker, M.; Dennis, J. W.
Cancer Res. 1994, 54, 1450–1457.
5. (a) Gruters, R. A.; Neefjes, J. J.; Tersmette, M.; deGoede,
R. E. Y.; Tulp, A.; Huisman, H. G.; Miedema, F.; Ploegh,