N. J. Kershaw et al. / Bioorg. Med. Chem. Lett. 11 (2001) 2545–2548
2547
(3): d 2.58 and 2.39 (2Â1H, CH2C(O)SCoA); product,
2-hydroxyphytanoyl-CoA (4): d 4.12, 1H, CH(OH)-
C(O)SCoA (Fig. 1). Note that the H NMR signals for
the 3R/3S epimers of the starting material and those for
the two diastereoisomeric products were coincident.
Phytanic acid (1) in the mammalian diet is present as a
mixture of epimers and it seems PAHX has evolved to
accept both substrates with approximately equal effi-
ciency. The results for PAHX also suggest that the next
two reactions in the b-oxidation pathway are non-ste-
reoselective, that is the lyase will accept both (2S,3R and
2R,3S) stereoisomers of 2-hydroxyphytanoyl-CoA (4)
and the oxidoreductase will accept both 2R and 2S
pristanal to give 2R/2S pristanic acid (2). However, only
the 2S stereoisomer of pristanic acid (2) is processed via
the a-oxidation pathway,26 and thus the results are
consistent with the presence of a racemase. The recent
characterisation of an a-methylacyl-CoA racemase defi-
ciency28 supports this hypothesis.
1
Under appropriate conditions, that is with high enzy-
me:substrate ratios, >95% conversion of the 3-epimeric
phytanoyl-CoA (3) to products could be achieved,
demonstrating both epimers to be substrates for PAHX.
Previous in vivo studies using rat liver are consistent
with this observation,26 implying both 3R- and 3S-
methylhexadecanoic acid are equally well metabolised.
The earlier work also elegantly demonstrated that the
3R epimer is converted to the 2S,3R threo product and
the 3S epimer to the 2R,3S threo product. The observa-
tion that both epimers of the natural substrate are sub-
strates indicates that PAHX activity is due to a single
enzyme that is responsible for the metabolism of both
stereoisomers. Further, it seems that the individual epi-
mers are converted to the products with the same rela-
tive stereochemistry. With the obvious exception of
racemases/epimerases, most enzymes, including non-
haem oxygenases are highly stereoselective.27 It will be
interesting to study how PAHX binds its epimeric
susbtrate. It is difficult to envisage how a ‘rigid’ three
point attachment of CoA, b-methyl and hydrocarbon
side-chain can lead to the observed selectivity. One
possibility is that a two point attachment occurs, most
probably involving selective binding of the b-methyl
group, but only one of the CoA and hydrocarbon side-
chain moieties.
Acknowledgements
We thank Dr. R. T. Aplin for mass spectrometric ana-
lyses and Dr. V. Lee for helpful discussions and also the
BBSRC, MRC, EPSRC, Felix foundation (scholarship
to MM), E.U. Biotechnology project and the Wellcome
Trust for financial support of the work.
References and Notes
1. Wanders, R. J. A.; Jakobs, C.; Skjelda, O. M. Refsum’s
disease. In The Metabolic and Molecular Basis of Inherited
Disease; Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D.,
Childs, B., Kinzler, K. W., Vogelstein, B., Eds.; McGraw Hill:
New York, 2001; pp 3303–3321.
2. Herndon, J. H.; Steinberg, D.; Uhlendorf, B. W.; Fales,
H. M. J. Clin. Invest. 1969, 48, 1017.
3. Mihalik, S. J.; Morrell, J. C.; Kim, D.; Sacksteder, K. A.;
Watkins, P. A.; Gould, S. J. Nat. Genet. 1997, 17, 185 and
references therein.
4. Steinberg, S. J.; Wang, S. J.; Kim, D. G.; Mihalik, S. J.;
Watkins, P. A. Biochem. Biophys. Res. Commun. 1999, 257, 615.
5. Jansen, G. A.; Ferdinandusse, S.; Ijlst, L.; Muijsers, A. O.;
Skjeldal, O. H.; Stokke, O.; Jakobs, C.; Besley, G. T. N.;
Wraith, J. E.; Wanders, R. J. A. Nat. Genet. 1997, 17, 190.
6. Foulon, V.; Antonenkov, V. D.; Croes, K.; Waelkens, E.;
Mannaerts, G. P.; Van Veldhoven, P. P.; Casteels, M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 10039.
7. Verhoeven, N. M.; Schor, D. S. M.; ten Brink, H. J.;
Wanders, R. J. A.; Jakobs, C. Biochem. Biophys. Res. Com-
mun. 1997, 237, 33.
8. Lloyd, M. D.; Lee, H.-J.; Harlos, K.; Zhang, Z.-H.; Bald-
win, J. E.; Schofield, C. J.; Charnock, J. M.; Garner, C. D.;
Hara, T.; Terwisscha van Scheltinga, A. C.; Valegard, K.;
Viklund, J. A. C.; Hajdu, J.; Andersson, I.; Danielsson, A.;
Bhikhabhai, R. J. Mol. Biol. 1999, 287, 943.
9. Valegard, K.; Terwisscha van Scheltinga, A. C.; Lloyd,
˚
M. D.; Hara, T.; Ramaswamy, S.; Perrakis, A.; Thompson,
A.; Lee, H.-J.; Baldwin, J. E.; Schofield, C. J.; Hajdu, J.;
Andersson, I. Nature 1998, 394, 805.
10. Zhang, Z.-H.; Ren, J.; Stammers, J. K.; Baldwin, J. E.;
Harlos, K.; Schofield, C. J. Nature Struct. Biol. 2000, 7, 127.
11. Steinberg, D.; Avigan, J.; Mize, C. E.; Baxter, J. H.;
Cammermeyer, J.; Fales, H. M.; Highet, P. F. J. Lipid Res.
1966, 7, 684.
12. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P.
Synthesis 1994, 639.
13. Xu, Z. M.; Johannes, C. W.; Houri, A. F.; La, D. S.;
Cogan, D. A.; Hofilena, G. E.; Hoveyda, A. H. J. Am. Chem.
Soc. 1997, 119, 10302.
Figure 1. Partial 1H NMR spectra (500 MHz, CD3CN–D2O, recorded
using a 3 mm microprobe) of phytanoyl-CoA (3) (lower trace) and 2-
hydroxyphytanoyl-CoA (4) (upper trace). Arrows indicate the reso-
nance changes discussed in the text. The broad lines observed result
from the poor solubility and probable aggregation of these materials
due to the presence of both hydrophobic and hydrophilic moieties.