Key Analogues of CC-1065 and the Duocarmycins
A R T I C L E S
Figure 2. Relationship between reactvity (solvolysis -log k, pH 3) and
cytotoxic potency (-log IC50, L1210), natural enantiomers. See Supporting
Information for abbreviations and key to letter notations.
Results and Discussion
Figure 3. Alkylation subunits and AM1 calculated heats of reaction for
hydride addition to the activated cyclopropane.
Design. Throughout the course of our investigations, we have
chronicled a direct relationship between the intrinsic chemical
stability of the alkylation subunit and the cytotoxic potency of
the resulting derivatives.15 Recently, a compilation of the data
derived from more than 30 deep-seated modifications resulted
in the establishment of a well-defined parabolic relationship
between the alkylation subunit reactivity and the resulting
cytotoxic potency that spanned a 104-106 range of reactivities
and activities (Figure 2).16 Presumably, this fundamental
relationship simply reflects the fact that the compound must be
sufficiently stable to reach its biological target yet remain
sufficiently reactive to alkylate DNA once it does. Significantly,
the work defined this optimal balance between reactivity and
stability, providing a fundamental design feature that is subject
to investigational interrogation.
Herein, we report our first such efforts, culminating in the
synthesis and evaluation of 7-methyl-1,2,8,8a-tetrahydrocyclo-
propa[c]thieno[3,2-e]indol-4-one (MeCTI, 3) as well as 6-meth-
yl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[2,3-e]indol-4-one (iso-
MeCTI, 4) and their incorporation into analogues of both CC-
1065 and the duocarmycins (Figure 3).17 The design of MeCTI
and the decision to invest in its exploration rested with
expectations that it would be substantially more stable than the
alkylation subunit found in CC-1065 (MeCPI, 5), leading to a
substantially more potent CC-1065 analogue approaching the
stability and activity of duocarmycin SA. Intuitively, this might
be anticipated to arise from the strain release provided by a
fused thiophene versus pyrrole, which in turn may further benefit
from the intrinsic electron-withdrawing character of a thiophene.
More quantitatively, this increased stability could be ap-
proximated using semiempirical calculations (AM1, MNDO)
for heats of reaction for hydride addition to the activated
cyclopropane (Figure 3). Using this approximation, MeCTI was
selected among several candidate alkylation subunits as being
more stable than CBI (6, 1,2,9,9a-tetrahydrocyclopropa[c]benzo-
[e]indol-4-one) and approaching or exceeding that of DSA (7),
potentially approaching the optimal stability defined by the
parabolic relationship. Significantly, MeCTI represents a single
atom change in the backbone structure of the CC-1065 alkylation
subunit that in turn was projected to provide a nearly optimal
increase in stability and potency (Figure 4).
(6) (a) CC-1065: Hurley, L. H.; Lee, C.-S.; McGovren, J. P.; Warpehoski, M.
A.; Mitchell, M. A.; Kelly, R. C.; Aristoff, P. A. Biochemistry 1988, 27,
3886-3892. (b) Hurley, L. H.; Warpehoski, M. A.; Lee, C.-S.; McGovren,
J. P.; Scahill, T. A.; Kelly, R. C.; Mitchell, M. A.; Wicnienski, N. A.;
Gebhard, I.; Johnson, P. D.; Bradford, V. S. J. Am. Chem. Soc. 1990, 112,
4633-4649. (c) Boger, D. L.; Johnson, D. S.; Yun, W.; Tarby, C. M.
Bioorg. Med. Chem. 1994, 2, 115-135. (d) Boger, D. L.; Coleman, R. S.;
Invergo, B. J.; Sakya, S. M.; Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.;
Kitos, P. A.; Thompson, S. C. J. Am. Chem. Soc. 1990, 112, 4623-4632.
(7) Duocarmycin A: (a) Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk,
S. A.; Kitos, P. A.; Suntornwat, O. J. Am. Chem. Soc. 1990, 112, 8961-
8971. (b) Boger, D. L.; Ishizaki, T.; Zarrimayeh, H. J. Am. Chem. Soc.
1991, 113, 6645-6649. (c) Boger, D. L.; Yun, W.; Terashima, S.; Fukuda,
Y.; Nakatani, K.; Kitos, P. A.; Jin, Q. Bioorg. Med. Chem. Lett. 1992, 2,
759-765.
(8) Duocarmycin SA: Boger, D. L.; Johnson, D. S.; Yun, W. J. Am. Chem.
Soc. 1994, 116, 1635-1656.
(9) Reviews: (a) Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. Engl.
1996, 35, 1438-1474. (b) Boger, D. L. Acc. Chem. Res. 1995, 28, 20-29.
(c) Boger, D. L.; Johnson, D. S. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
3642-3649. (d) Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res. 1999,
32, 1043-1052.
(10) Warpehoski, M. A.; Gebhard, I.; Kelly, R. C.; Krueger, W. C.; Li, L.;
McGovern, J. P.; Praire, M. D.; Wienienski, N.; Wierenga, W. J. Med.
Chem. 1988, 31, 590-603.
(11) (a) Boger, D. L.; Coleman, R. S.; Invergo, B. J.; Zarrinmayeh, H.; Kitos,
P. A.; Thompson, S. C.; Leong, T.; McLaughlin, L. W. Chem.-Biol. Interact.
1990, 73, 29-52. (b) Boger, D. L.; Zarrinmayeh, H.; Munk, S. A.; Kitos,
P. A.; Suntornwat, O. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1431-1435.
(c) Boger, D. L.; Munk, S. A.; Zarrinmayeh, H. J. Am. Chem. Soc. 1991,
113, 3980-3983. (d) Boger, D. L.; Johnson, D. S. J. Am. Chem. Soc. 1995,
117, 1443-1444.
(12) Boger, D. L.; Bollinger, B.; Hertzog, D. L.; Johnson, D. S.; Cai, H.; Mesini,
P.; Garbaccio, R. M.; Jin, Q.; Kitos, P. A. J. Am. Chem. Soc. 1997, 119,
4987-4998.
(13) Boger, D. L.; Garbaccio, R. M. Bioorg. Med. Chem. 1997, 5, 263-276.
(14) Reviews: (a) Wolkenberg, S. E.; Boger, D. L. Chem. ReV. 2002, 102, 2477-
2496. (b) Tse, W. C.; Boger, D. L. Chem. Biol. 2004, 11, 1607-1617.
(15) (a) Boger, D. L.; Ishizaki, T. Tetrahedron Lett. 1990, 31, 793-796. (b)
Boger, D. L.; Munk, S. A.; Ishizaki, T. J. Am. Chem. Soc. 1991, 113, 2779-
2780. (c) Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1994, 116, 5523-
5524.
(16) (a) Parrish, J. P.; Hughes, T. V.; Hwang, I.; Boger, D. L. J. Am. Chem.
Soc. 2004, 126, 80-81. (b) Parrish, J. P.; Trzupek, J. D.; Hughes, T. V.;
Hwang, I.; Boger, D. L. Bioorg. Med. Chem. 2004, 12, 5845-5856.
Synthesis of N-Boc-MeCTI. Stobbe condensation of 4-me-
thylthiophene-3-carboxaldehyde (9, 4 equiv of t-BuOK, 6 equiv
(17) (a) Muratake, H.; Hayakawa, A.; Natsume, M. Chem. Pharm. Bull. 2000,
48, 1558-1566. (b) Muratake, H.; Okabe, K.; Takahashi, M.; Tonegawa,
M.; Natsume, M. Chem. Pharm. Bull. 1997, 45, 799-806. (c) Muratake,
H.; Hayakawa, A.; Natsume, M. Tetrahedron Lett. 1997, 38, 7577-7580.
9
J. AM. CHEM. SOC. VOL. 129, NO. 45, 2007 14093