4
Tetrahedron
We would like to thank Jamie Scott for discussions and also
Paul Davey, Scott Boyd, Marta Wylot, Eva Lenz and Steve
Glossop for analytical support.
1
2
3
4
5
81
70
72
86
64
Supplementary Data
Supplementary material (experimental procedures and
1
characterization data, including H NMR, 13C NMR spectra) for
all table compounds and ‘chloro-precursors’ associated with this
article can be found in the online version.
References
1.
See, for example; (a) Khalil, N. A.; Ahmed, E. M.; Mohamed, K.
O.; Nissan, Y. M.; Zaitone, S. A. Bioorg. Med. Chem. 2014, 22,
2080–2089;(b) Abouzid, K. A. M.; Khalil, N. A.; Ahmed, E. M.;
Mohamed, K. O. Arch. Pharm. Res. 2013, 36, 41–50; (c) Yang, S.;
Kuo, G.; Gaul, M. D.; Rano, T. A. WO Patent 2013/085957; Chem.
Abstr. 2013, 159, 118568.
2.
Semeraro, C.; Dorigotti, L.; Banfi, S.; Carpi. C. J. Cardiovasc.
Pharm. 1981, 3, 455-467.
3.
(a) Almario, G. A.; Barrague, M.; Burnier, P.; Enguehard, C.;
Gao, Z.; George, P.; Gueiffier, A.; Li, A. T.; Puech, F.; Vaz,
R.; Zhao, Q. WO Patent 2009/016286; Chem. Abstr. 2009, 150,
168375; (b) Zoller, G.; Strobel, H.; Will, D. W.; Wohlfart, P. WO
Patent 2008/104279; Chem. Abstr. 2008, 149, 307879; (c) Falco, J.
6
14
L.; Palomer, A.; Guglietta, A. WO Patent 2007/110437; Chem. Abstr.
2007, 147, 406830.
(a) Biagetti, M.; Contini, S. A.; Genski, T.; Guery, S.; Leslie,
C. P.; Mazzali, A.; Pizzi, D. A.; Sabbatini, F. M.; Seri, C. WO
Conditions: 1.5 equiv. 2-ethoxyethanamine, BrettPhos (5 mol%), BrettPhos
precatalyst (5 mol%), 2.4 equiv. LHMDS, 60 °C.
4.
Patent 2009/095377; Chem. Abstr. 2009, 151, 245649; (b) Bouchain,
G.; Delorme, D.; Frechette, S.; Gaudette, F.; Isakovic, L.; Leit,
S.; Moradei, O.; Paquin, I.; Raeppel, S.; Vaisburg, A.; Zhou, Z.
Of particular note was the 81% yield for the analogue
containing the methyl group (Entry 1, Table 3), the smallest of
the R1 substituents investigated. The transformations shown in
Scheme 2 and discussed earlier, had led us to speculate that the
unreactive nature of the pyradizine ‘NH2’ in these reactions could
be due to steric hindrance from R1 (thus negating the need for the
formamidine protecting group shown in Scheme 2). However, the
high yield obtained for the methyl substituent in Table 3
suggested that steric hindrance was not a significant factor.
Accordingly, we found that we were also able to extend this
chemistry to the corresponding unsubstituted (R1 = H) analogues.
6-Chloro-3-pyridazinamine 10, for example, gave a respectable
68% yield with 2-ethoxyethanamine under the same conditions
(Scheme 5).
WO Patent 2005/092899; Chem. Abstr. 2005, 143, 367317.
5.
(a) Xing, L.; Ziener, U.; Sutherland, T. C.; Cuccia, L. A. Chem.
Commun. 2005, 5751–5753; (b) Gschwend, H. W.; Kodumuru, V.; Liu,
S.; Kamboj, R. U.S. Patent 8148378; Chem. Abstr. 2012, 156,
477720.
6.
7.
Bethel, P. A.; Roberts, B.; Bailey, A. Tetrahedron Lett. 2014,
55, 5186-5190.
(a) Blench, T.; Goodacre, S.; Lai, Y.; Liang, Y.; Macleod, C.;
Magnuson, S.; Tsui, V.; Williams, K.; Zhang, B. WO Patent
2012/066061; Chem. Abstr. 2012, 157, 12801; (b) Currie, K. S.;
Wang, X.; Young, W. B. WO Patent 2012/031004; Chem. Abstr. 2012,
156, 363058; (c) Cho, Y. S.; Borland, M.; Brain, C.; Chen, C. H.;
Cheng, H.; Chopra, R.; Chung, K.; Groarke, J.; He, G.; Hou, Y.;
Kim, S.; Kovats, S.; Lu, Y.; O’Reilly, M.; Shen, J.; Smith, T.;
Trakshel, G.; Vogtle, M.; Xu, M.; Xu, M.; Sung, M. J. J. Med.
Chem. 2010, 53, 7938–7957.
Maiti, D.; Fors, B. P.; Henderson, J. L.; Nakamura, Y.; Buchwald,
S. L. Chem. Sci., 2011, 2, 57.
8.
9.
BrettPhos first generation precatalyst; Chloro[2-
(dicyclohexylphosphino)-3,6-dimethoxy-2′,4′, 6′-triisopropyl-
1,1′-biphenyl][2-(2-aminoethyl)phenyl]palladium(II). CAS
1148148-01-9
Scheme 5. Reaction conditions: (i) 1.5 equiv. 2-ethoxyethanamine,
10. See, for example; (a) Wagner, P.; Bollenbach, M.; Doebelin, C.;
Bihel, F.; Bourguignon, J.; Salome, C.; Schmitt, M. Green Chem.
2014, 16, 4170-4178; (b) Hu, C. H.; Qiao, J. X.; Han, Y.; Wang,
T. C.; Hua, J.; Price, L. A.; Wu, Q.; Shen, H.; Huang, C. S.;
Rehfuss, R.; Wexler, R. R.; Lam, P. Y. S. Bioorg. Med. Chem.
Lett. 2014, 24, 2481-2485; (c) Loones, K. T. J.; Maes, B. U. W.;
Meyers, C.; Deruytter, J. J. Org. Chem. 2006, 71, 260-264.
11. 6-Chloro-4-methylpyridazin-3-amine precursor was purchased from
Sigma Aldrich.
BrettPhos (5 mol%), BrettPhos precatalyst (5 mol%), 2.4 equiv. LHMDS, 60
°C
In summary, we have reported a convenient and facile synthetic
approach for accessing a desirable medicinal chemistry scaffold
based on 4-aryl and alkyl substituted, N6-alkylated pyridazine-
3,6-diamines. This methodology makes use of selective Suzuki
and Negishi transformations using a low-cost, commercially
available starting material. Introduction of the desired primary
amines was achieved via a Buchwald protocol with BrettPhos
precatalyst on challenging and previously unexplored pyridazine
structures. Moreover, no additional protecting group strategy was
required to aid the desired selectivity.
Acknowledgments