LETTER
A Mild, Facile, One-Pot Synthesis of Zinc Azido Porphyrins
1981
(18) General Zinc-Removal Procedure for Porphyrins 15–19
In a typical experiment, to a solution the porphyrin (10.0 mg)
in CH2Cl2 (3 mL) was added HCl in dioxane (4 M, 0.5 mL)
and the mixture stirred at r.t. for 5 min. The mixture was
neutralised with sat. NaHCO3 solution, dried (MgSO4), and
the solvent removed under reduced pressure.
showed that the synthesized porphyrins successfully un-
dergo click reaction and facile demetallation.
Acknowledgment
Mass spectrometry data were acquired at the EPSRC UK National
Mass Spectrometry Facility at Swansea University.
(19) Spectroscopic Data
UV-Vis, HRMS, and 13C NMR data were obtained as
expected for all compounds.
Compound 1: 1H NMR (400 MHz, CDCl3): δ = 7.25 (d, 2 H,
5-m-Ar), 7.77 (m, 9 H, 10,15,20-m,p-Ar), 8.22 (m, 8 H,
5,10,15,20-o-Ar), 8.87 (m, 8 H, β-H).
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
Compound 2: 1H NMR (400 MHz, DMSO-d6): δ = 4.77 (s,
9 H, CH3), 8.27 (m, 4 H, 5-Ar), 9.09 (m, 14 H, 10,15,20-o-
Ar, β-H), 9.60 (m, 6 H, 10,15,20-m-Ar).
References and Notes
(1) Rostovtsev, V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. Int. Ed. 2002, 41, 2596.
(2) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int.
Ed. 2001, 40, 2004.
(3) Devaraj, N. K.; Decreau, R. A.; Ebina, W.; Collman, J. P.;
Chidsey, C. E. D. J. Phys. Chem. B 2006, 110, 15955.
(4) Shetti, V. S.; Ravikanth, M. Eur. J. Org. Chem. 2010, 494.
(5) Zimmerman, S. C.; Elmer, S. L.; Man, S. Eur. J. Org. Chem.
2008, 3845.
(6) Chen, H.; Zeng, J.; Deng, F.; Luo, X.; Lei, Z.; Li, H.
J. Polym. Res. 2012, 19, 1.
(7) Palomaki, P. K. B.; Krawicz, A.; Dinolfo, P. H. Langmuir
2011, 27, 4613.
(8) Iehl, J.; Pereira de Freitas, R.; Delavaux-Nicot, B.;
Nierengarten, J.-F. Chem. Commun. 2008, 2450.
(9) Dumoulin, F.; Ahsen, V. J. Porphyrins Phthalocyanines
2011, 15, 481.
(10) Pavani, C.; Uchoa, A. F.; Oliveira, C. S.; Iamamoto, Y.;
Baptista, M. S. Photochem. Photobiol. Sci. 2009, 8, 233.
(11) Abraham, R. J.; Bedford, G. R.; Wright, B. Org. Magn. Res.
1982, 18, 45.
Compound 3: 1H NMR (400 MHz, CDCl3): δ = 4.11 (s, 9 H,
OCH3), 7.42 (m, 2 H, 5-m-Ar), 8.19 (m, 2 H, 5-o-Ar), 8.30
(m, 6 H, 10,15,20-m-Ar), 8.42 (m, 6 H, 10,15,20-o-Ar), 8.87
(m, 8 H, β-H).
Compound 4: 1H NMR (400 MHz, CDCl3): δ = 3.80 (s, 9 H,
OCH3), 7.19 (m, 7 H, 10,15,20-p-Ar, 5-m-Ar), 7.55 (m, 3 H,
10,15,20-m-Ar), 7.66 (s, 3 H, 5-2-Ar), 7.80 (m, 3 H, 5-5-Ar),
8.88–9.03 (m, 8 H, β-H).
Compound 5: 1H NMR (400 MHz, CDCl3): δ = 1.61 (m, 9 H,
CH2CH3), 4.31 (m, 6 H, CH2CH3), 7.23 (m, 6 H, 10,15,20-
m-Ar), 7.35 (d, 2 H, J = 8.36 Hz, 5-m-Ar), 8.08 (m, 6 H,
10,15,20-o-Ar), 8.17 (d, 2 H, J = 8.36 Hz, 5-o-Ar), 8.89–8.98
(m, 8 H, β-H).
Compound 6: 1H NMR (400 MHz, CDCl3): δ = 7.44 (d, 2 H,
J = 8.36 Hz, 5-m-Ar), 7.75 (m, 6 H, 10,15,20-m-Ar), 8.14
(m, 6 H, 10,15,20-o-Ar),8.19 (d, 2 H, J = 8.16 Hz, 5-m-Ar),
8.96 (m, 8 H, β-H).
Compound 7: 1H NMR (400 MHz, CDCl3): δ = 7.41 (d, 2 H,
J = 7.96 Hz, 5-m-Ar), 7.94 (m, 6 H, 10,15,20-m-Ar), 8.08
(m, 6 H, 10,15,20-o-Ar), 8.18 (d, 2 H, J = 7.92 Hz, 5-o-Ar),
8.87 (m, 8 H, β-H).
(12) Rhee, J.-K.; Baksh, M.; Nycholat, C.; Paulson, J. C.;
Kitagishi, H.; Finn, M. G. Biomacromolecules 2012, 13,
2333.
(13) Shetti, V. S.; Ravikanth, M. Eur. J. Org. Chem. 2010, 494.
(14) Goddard-Borger, E. D.; Stick, R. V. Org. Lett. 2007, 9, 3797.
(15) Fischer, N.; Goddard-Borger, E. D.; Greiner, R.; Klapötke,
T. M.; Skelton, B. W.; Stierstorfer, J. J. Org. Chem. 2012,
77, 1760.
Compound 8: 1H NMR (400 MHz, CDCl3): δ = 7.42 (d, 2 H,
J = 8.6 Hz, 5-m-Ar), 7.87 (m, 6 H, 10,15,20-m-Ar), 8.07 (m,
6 H, 10,15,20-o-Ar), 8.19 (d, 2 H, J = 8.36 Hz, 5-m-Ar), 8.84
(m, 8 H, β-H).
Compound 9: 1H NMR (400 MHz, CDCl3): δ = 7.23 (m, 1 H,
5-o-Ar), 7.52 (m, 1 H, 5-m-Ar), 7.75 (m, 10 H, 10,15,20-
m,p-Ar, 5-p-Ar), 7.96 (m, 1 H, 5-o-Ar), 8.21 (m, 6 H,
10,15,20-o-Ar), 8.87 (m, 8 H, β-H).
(16) General Synthesis of Porphyrins 1–14
In a typical experiment, zinc(II) acetate (50 mg) in MeOH
(2 mL) was added to a solution of the porphyrin (0.040
mmol) and Et3N (50 mg) dissolved in a suitable solvent
(CH2Cl2–THF for lipophilic porphyrins, MeOH for
hydrophilic porphyrins). Imidazole-1-sulfonyl azide
hydrogen sulfate (0.045 mmol) was added to the stirred
suspension, and the mixture stirred at r.t. until completion of
the reaction (TLC). The solvent was removed under reduced
pressure, and the product was purified by column
chromatography (normal-phase silica for lipophilic
porphyrins, reverse-phase silica for hydrophilic porphyrins).
(17) General Synthesis of Porphyrins 15–19
In a typical experiment, in a 10 mL microwave tube the
porphyrin (0.037 mmol) was dissolved in THF (7 mL) and
phenylacetylene (0.070 mmol) added. A solution of
copper(II) sulfate and sodium ascorbate (1 mg) in H2O
(1 mL) was added to the mixture and the mixture heated to
90 °C (MW) until complete consumption of the starting
material was observed on TLC. The solvent was removed
under reduced pressure, and the product purified by column
chromatography (normal phase).
Compound 10: 1H NMR (400 MHz, CDCl3): δ = 7.93 (m, 2
H, 5-4,5-Ar),7.75 (m, 10 H, 10,15,20-m,p-Ar, 5-3-Ar), 8.09
(m, 1 H, 5-o-Ar), 8.23 (m, 6 H, 10,15,20-o-Ar), 8.80–8.96
(m, 8 H, β-H).
Compound 11: 1H NMR (400 MHz, CDCl3): δ = 4.14 (s, 2
H, CH2),7.35 (d, 2 H, J = 7.76 Hz, 5-m-Ar) 7.74 (m, 9 H,
10,15,20-m,p-Ar), 8.15 (d, 2 H, J =7.72 Hz, 5-o-H), 8.23 (m,
6 H, 10,15,20-o-Ar), 8.85–8.98 (m, 8 H, β-H).
Compound 12: 1H NMR (400 MHz, CDCl3): δ = 1.61 (m, 9
H, CH2CH3), 4.31 (m, 6 H, CH2CH3),4.67 (s, 2 H, NH2), 7.25
(m, 6 H, 10,15,20-m-Ar), 7.65 (d, 2 H, J = 6.12 Hz, 5-m-Ar),
8.10 (m, 6 H, 10,15,20-o-Ar), 8.22 (d, 2 H, J = 6.32 Hz, 5-o-
Ar), 8.85–8.92 (m, 8 H, β-H).
Compound 13: 1H NMR (400 MHz, MeOH-d4): δ = 7.47 (d,
2 H, 5-m-Ar, J = 8.40 Hz), 8.26 (m, 18 H, 5-o-Ar, 10,15,20-
o,m-Ar), 8.85 (m, 8 H β-H).
Compound 14: 1H NMR (400 MHz, CDCl3): δ = 7.04 (d, 2
H, J = 8.36 Hz, 5-m-Ar), 8.09 (d, 2 H, J = 8.36 Hz, 5-m-Ar),
9.00 (m, 8 H, β-H).
Compound 15: 1H NMR (400 MHz, CDCl3): δ = 4.11 (s,
9 H, OCH3), 7.45 (m, 1 H, p-Ph), 7.55 (m, 2 H, m-Ph),
8.02 (m, 2 H, o-Ph), 8.20 (m, 2 H, 5-m-Ar), 8.32 (m, 6 H,
10,15,20-m-Ar), 8.43 (m, 8 H, 5,10,15,20-o-Ar), 8.52 (s, 1
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1978–1982