Scheme 1. Synthetic Plans and Hanson’s Biosynthetic
Hypothesis of Cephalosporolides E and F
Figure 1. Representative cephalosporolides.
The molecular structures of cephalosporolides were eluci-
dated by extensive NMR studies, and the relative config-
uration of Ces-C (2) and Ces-E (7) was unambiguously
determined by single-crystal X-ray diffraction. Interest-
ingly, some of these cephalosporolides were also isolated
recently from other natural sources such as Cordyceps
militaris BCC 2816,4 Beauveria bassiana,5 and/or wood
decay fungus Armillaria tabescens (strain JNB-OZ344).6
Structurally, these cephalosporolides (1ꢀ6) are 10-membered
lactones (namely decanolides) with a methyl group at C9,
resembling to other bioactive decanolides.7 However, the
structural skeleton of cephalosporolides E and F (Ces-E, 7,
and Ces-F, 8) characterized by the presence of 5,5-spiro-
ketal-cis-fused-γ-lactone was unprecedented at the time of
their isolation but found in other recently isolated natural
products such as cephalosporolides H and I, penisporo-
lides, and ascospiroketals.8
the synthetically challenging 10-membered lactone. How-
ever, it has not been reported that a unified synthetic stra-
tegy would lead to total syntheses of both 10-membered
cephalosporolides and the unique 5,5-spiroketal-cis-fused-
γ-lactones Ces-E and Ces-F. The combination of the wide
occurrence in nature and potential biological activity
coupled with the structural novelty and complexity of
Ces-E and Ces-F prompted us to develop a biomimetic
divergent synthetic strategy for the cephalosporolide
family, especially the potential transformations of the 10-
membered lactones to 5,5-spiroketal-cis-fused-γ-lactones.
Our synthetic strategy (Scheme 1) was primarily inspired
by Hanson’s biogenetic hypothesis3 of Ces-E and Ces-F,
which might arise from dehydrative ring contraction of
Ces-C via hydrolysis, lactonization, and acetalization.11
However, their attemptstothe chemicalconversion of Ces-
C into Ces-E and Ces-F in the laboratory were unsuccess-
ful. Intrigued by the employment of Ces-B for hypothetic
biosynthesis of tenuipyrone12 and pyridomacrolidin,13 we
envisioned that Ces-B could also be the biosynthetic pre-
cursor of cephalosporolides via a diastereoselective inter-
molecular oxa-Michael addition14 and/or Hanson’s ring-
contraction rearrangement (Ces-E and Ces-F, Scheme 1).
In addition, Ces-C and Ces-G, if available from Ces-B,
could be explored to verify Hanson’s biosynthetic hypoth-
esis under the conditions optimized for ring contraction
rearrangement of Ces-B.
Although the biological activity profiles of cephalospor-
olides have not been fully demonstrated, they have re-
ceived considerable synthetic attention9,10 partly because
of the novel structural skeleton of Ces-E and Ces-F and/or
(3) (a) Ackland, M. J.; Hanson, J. R.; Hitchcock, P. B.; Ratcliffe,
A. H. J. Chem. Soc., Perkin Trans. 1 1985, 843. (b) Farooq, A.; Gordon,
J.; Hanson, J. R.; Takahashi, J. A. Phytochemistry 1995, 38, 557.
(4) Rukachaisirikul, V.; Pramjit, S.; Pakawatchai, C.; Isaka, M.;
Supothina, S. J. Nat. Prod. 2004, 67, 1953.
ꢀ
(5) Oller-Lopez, J. L.; Iranzo, M.; Mormeneo, S.; Oliver, E.; Cuerva,
J. M.; Oltra, J. E. Org. Biomol. Chem. 2005, 3, 1172.
(6) Herath, H. M. T. B.; Jacob, M.; Wilson, A. D.; Abbas, H. K.;
Nanayakkara, N. P. D. Nat. Prod. Res. 2012, 1.
(10) (a) Fernandes, R. A.; Ingle, A. B. Synlett 2010, 158. (b) Brimble,
M. A.; Finch, O. C.; Heapy, A. M.; Fraser, J. D.; Furkert, D. P.;
O’Connor, P. D. Tetrahedron 2011, 67, 995. (c) Ramana, C. V.;
Suryawanshi, S. B.; Gonnade, R. G. J. Org. Chem. 2009, 74, 2842. (d)
Tlais, S. F.; Dudley, G. B. Beilstein J. Org. Chem. 2012, 8, 1287. (e)
Chang, S.; Britton, R. Org. Lett. 2012, 14, 5844.
(11) Oltra observed the facile conversion of coisolated bassianolone
to Ces-E and Ces-F via acetalization and proposed that bassianolone
might be the true biosynthetic precursor. See refs 5 and 25.
(12) (a) Asai, T.; Chung, Y.-M.; Sakurai, H.; Ozeki, T.; Chang, F.-R.;
Yamashita, K.; Oshima, Y. Org. Lett. 2012, 14, 513. (b) Song, L.; Yao,
H.; Zhu, L.; Tong, R. Org. Lett. 2013, 15, 6.
€
(7) For reviews, see: (a) Drager, G.; Kirschning, A.; Thiericke,
R.; Zerlin, M. Nat. Prod. Rep. 1996, 13, 365. (b) Ferraz, H. M. C.;
Bombonato, F. I.; Longo, L. S., Jr. Synthesis 2007, 3261. (c) Riatto,
V. B.; Pilli, R. A.; Victor, M. M. Tetrahedron 2008, 64, 2279. For selected
syntheses of other decanolides, see: (d) Vadhadiya, P. M.; Puranik,
V. G.; Ramana, C. V. J. Org. Chem. 2012, 77, 2169. (e) Ramana, C. V.;
Khaladkar, T. P.; Chatterjee, S.; Gurjar, M. K. J. Org. Chem. 2008, 73,
3817. (f) Kobayashi, Y.; Asano, M.; Yoshida, S.; Takeuchi, A. Org. Lett.
2005, 7, 1533.
(8) (a) Li, X.; Yao, Y.; Zheng, Y.; Sattler, I.; Lin, W. Arch. Pharm.
Res. 2007, 30, 812. (b) Li, X.; Sattler, I.; Lin, W. J. Antibiot. 2007, 60, 191.
€
(c) Seibert, S. F.; Krick, A.; Eguereva, E.; Kehraus, S.; Konig, G. M.
Org. Lett. 2007, 9, 239.
(9) (a) Krishna, P. R.; Sreeshailam, A. Synlett 2008, 2795. (b)
Barradas, S.; Urbano, A.; Carreno, M. C. Chem.;Eur. J. 2009, 15,
9286. (c) Ma, B.; Zhong, Z.; Hu, H.; Li, H.; Zhao, C.; Xie, X.; She, X.
Chem.;Asian J. 2013, 8, 1391.
(13) Baldwin, J. E.; Adlington, R. M.; Conte, A.; Irlapati, N. R.;
Marquez, R.; Pritchard, G. J. Org. Lett. 2002, 4, 2125.
€
(14) For recent reviews, see: (a) Nising, C. F.; Brase, S. Chem. Soc.
~
€
Rev. 2008, 37, 1218. (b) Nising, C. F.; Brase, S. Chem. Soc. Rev. 2012, 41,
988.
Org. Lett., Vol. 15, No. 22, 2013
5851