functional groups in the ortho position next to the protected
amino group.
Scheme 1. Possible Functionalization Modes of Alkynylanilides
We aimed to examine the chemoselective functionaliza-
tion of o-alkynylanilides with iodonium salts via copper-
catalyzed oxidative coupling. The alkynylanilide motif
offers multiple sites of reactivity, either with the anilide
aromatic system or using the triple bond (Scheme 1).
Considering the available synthetic pathways, meta-selective
arylation6 would provide meta-arylated ethynyl anilides
(path 1) while the copper-catalyzed electrophilic carbo-
functionalization of alkynes with diaryl iodonium triflates
would form 2,3-diarylindoles (path 2) or benzoxazines
with fully substituted exo double bond (path 3). A similar
carboarylation strategy has been described by Gaunt
and utilized for the synthesis of highly functionalyzed
tetrasubstituted alkenyl triflates7 and the construction of
heterocycles and carbacycles.8
Transition-metal-accelerated ring closure with the par-
ticipation of the triple bond can occur through two possi-
ble pathways: the preferred 5-endo-dig cyclization provides
indoles9 while in the presence of Au,10 Pd,11 or iodine12
catalysts the relatively rare 6-exo-dig ring closure affords
benzoxazines,13 which have been shown to possess signifi-
cant biological activity.14
with full conversion in the presence of 10 mol % of
Cu(OTf)2 in dichloroethane at 50 °C.15 The reaction
product was isolated in 59% yield and determined to be
benzoxazine 3a through NMR analysis. Other solvents
(DCM, chloroform, DMF, dioxane, THF) and other
catalysts (Pd(OAc)2, AuCl, CuSO4, CuI, Cu(MeCN)4OTf)
proved to be unsuitable for the efficient transformation of
the pivalanilide.16
Scheme 2. Model Reaction for Optimization Studies
As a model substrate, 2-phenylethynylpivalanilide (1a)
was reacted with phenylmesityliodonium triflate(2a) in the
presence of transition-metal catalysts in various solvents
(Scheme 2.). We found that the alkyne was transformed
(7) Suero, M. G.; Bayle, E. D.; Collins, S. L.; Gaunt, M. J. J. Am.
Chem. Soc. 2013, 135, 5332.
(8) (a) Cahard, E.; Bremeyer, N.; Gaunt, M. J. Angew. Chem., Int. Ed.
2013, 52, 9284. (b) Walkingshaw, A. J.; Xu, W.; Suero, M. G.; Gaunt,
M. J. J. Am. Chem. Soc. 2013, 135, 12532.
(9) (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.
(b) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (c) Cacchi, S.;
Fabrizi, G. Chem. Rev. 2005, 105, 2873. (d) Zeni, G.; Larock, R. C.
Chem. Rev. 2004, 104, 2285. (e) Nakamura, I.; Yamamoto, Y. Chem.
Rev. 2004, 104, 2127. (f) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008,
108, 3395.
(10) Hashmi, A. S. K.; Schuster, A. M.; Schmuck, M.; Rominger, F.
Eur. J. Org. Chem. 2011, 4595.
(11) (a) Saito, T.; Ogawa, S.; Takei, N.; Katsumura, N.; Otani, T.
To examine the scope and limitation of the developed
methodology, we reacted different alkynylanilides with
phenylmesityliodonium triflate in the presence of 10 mol
% of Cu(OTf)2 in DCE at 50 °C (Scheme 3). The presence
of a methyl group in any position of the arylethynyl part
caused lower efficiency compared to the unsubstituted
phenylethynyl derivative, but we obtained the desired
compounds (3bÀd) in 65%, 63%, and 44% yields, respec-
tively. Arylethynylpivalanilides substituted with halogens
(Br, Cl, F) were also transformed to the appropriate
benzoxazines (3eÀi) in 40À63% yield. Both strongly elec-
tron-withdrawing and -donating groups are compatible
with the reaction. In the case of nitro and methoxy group
we obtained the appropriate products (3j and 3k) in 34 and
48% yield.
However, when the arylethynyl reactant was substituted
with an ester group, benzoxazine 3l was obtained in 65%
yield. When an extended aromatic ring system such as
naphthalene was present in the substrate, the appropriate
benzoxazine (3m) was prepared in good yield (79%). In the
case of these nonsymmetrically substituted diaryl deriva-
tives, the NMR measurements showed the presence of
mixture of geometric isomers.17 Careful analysis revealed
that the products undergo light-induced isomerization in
solution.18
ꢁ
Org. Lett. 2011, 13, 1098. (b) Costa, M.; Ca, N. D.; Massera, C.; Salerno,
G.; Soliani, M. J. Org. Chem. 2004, 69, 2469. (c) Cacchi, S.; Fabrizi, G.;
Marinelli, F. Synlett 1999, 401.
(12) Lee, W.-C.; Shen, H.-C.; Hu, W.-P.; Lo, W.-S.; Murali, C.;
Vandavasi, J. K.; Wang, J.-J. Adv. Synth. Catal. 2012, 354, 2218.
(13) For synthesis of 4-alkylidene-4H-3,1-benzoxazines, see: (a)
Fresneda, P. M.; Bleda, J. A.; Sanz, M. A.; Molina, P. Synlett 2007,
1541. (b) Kobayashi, K.; Okamura, Y.; Konishi, H. Synthesis 2009, 41,
1494. (c) Kobayashi, K.; Okamura, Y.; Fukamachi, S.; Konishi, H.
Heterocycles 2010, 81, 1253.
(14) (a) Fensome, A.; Bender, R.; Chopra, R.; Cohen, J.; Collins,
M. A.; Hudak, V.; Malakian, K.; Lockhead, S.; Olland, A.; Svenson, K.;
Terefenko, E. A.; Unwalla, R. J.; Wilhelm, J. M.; Wolfrom, S.; Zhu, Y.;
Zhang, Z.; Zhang, P.; Winneker, R. C.; Wrobel, J. J. Med. Chem. 2005,
48, 5092. (b) Hays, S. J.; Caprethe, B. W.; Gilmore, J. L.; Amin, N.;
Emmerling, M. R.; Michael, W.; Nadimpali, R.; Nath, R.; Raser, K. J.;
Stafford, D.; Watson, D.; Wang, K.; Jaen, J. C. J. Med. Chem. 1998, 41,
1060. (c) Patel, M.; Ko, S. S.; McHugh, R. J.; Markwalder, J. A.;
Srivasta, A. S.; Cordova, B. C.; Klabe, R. M.; Erickson-Viitanen, S.;
Trainor, G. L.; Seitz, S. P. Bioorg. Med. Chem. Lett. 1999, 9, 2805. (d)
Dias, N.; Goossens, J. F.; Baldeyrou, B.; Lansiaux, A.; Colson, P.; Di
Salvo, A.; Bernal, J.; Turnbull, A.; Mincher, D. J.; Bailly, C. Bioconju-
gate Chem 2005, 16, 949. (e) Zhang, P.; Terefenko, T. A.; Fensome, A.;
Zhang, Z.; Zhu, Y.; Cohen, J.; Winneker, R.; Wrobel, J.; Yardley
J. Bioorg. Med. Chem. Lett. 2002, 12, 787.
(16) Cu(OTf)2ÀDCE was found to be the optimal catalystÀsolvent
combination. For further details of optimization studies, see the Sup-
porting Information.
(15) 50 °C is the optimal temperature. For further details of optimi-
zation studies, see the Supporting Information.
Org. Lett., Vol. 15, No. 22, 2013
5655