Minghao Li et al. / Chinese Journal of Catalysis 40 (2019) 1135–1140
1139
Graphical Abstract
Chin. J. Catal., 2019, 40: 1135–1140 doi: S1872-2067(19)63370-X
Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole
from renewable acetol and 2-phenylindoles in a biphasic system
Minghao Li, Fengtian Wu, Yanlong Gu *
Huazhong University of Science and Technology; Lanzhou Institute of
Chemical Physics, Chinese Academy of Sciences
An expeditious synthesis of benzo[a]carbazole from readily available
2-phenylindoles and bio-renewable acetol catalyzed by
Brönsted acidic ionic liquid is reported.
a reusable
[29] X.-F. Xia, N. Wang, L.-L. Zhang, X.-R. Song, X.-Y. Liu, Y.-M. Liang, J.
Org. Chem., 2012, 77, 9163–9170.
[42] Z. Zhang, K. Liu, X. Chen, S.-J. Su, Y. Deng, W. Zeng, RSC Adv., 2017,
7, 30554–30558.
[30] T. Nanjo, S. Yamamoto, C. Tsukano, Y. Takemoto, Org. Lett., 2013,
15, 3754–3757.
[43] B. Li, B. Zhang, X. Zhang, X. Fan, Chem. Commun., 2017, 53,
1297–1300.
[31] S. Protti, A. Palmieri, M. Petrini, M. Fagnoni, R. Ballini, A. Albinia,
Adv. Synth. Catal., 2013, 355, 643–646.
[44] F. Wu, W. Huang, L. Yi, J. Yang, Y. Gu, Adv. Synth. Catal., 2018, 360,
3318–3330.
[32] J. Yang, Q. Zhang, W. Zhang, W. Yu, RSC Adv., 2014, 4,
13704–13707.
[33] J.-R. Huang, L. Qin, Y.-Q. Zhu, Q. Songa, L. Dong, Chem. Commun.,
2015, 51, 2844–2847.
[34] Y. Li, Z. Pang, T. Zhang, J. Yang, W. Yu, Tetrahedron, 2015, 71,
3351–3358.
[35] C.-W. Kuo, A. Konala, L. Lin, T.-T. Chiang, C.-Y. Huang, T.-H. Yang, V.
Kavala, C.-F. Yao, Chem. Commun., 2016, 52, 7870–7873.
[36] I. T. Alt, B. Plietker, Angew. Chem. Int. Ed., 2016, 55, 1519–1522.
[37] L. Wu, G. Deng, Y. Liang, Org. Biomol. Chem., 2017, 15,
6808–6812.
[45] A. S. Amarasekara, Chem. Rev., 2016, 116, 6133–6183.
[46] C. Wu, L.-H. Lu, A. Z. Peng, G.-K. Jia, C. Peng, Z. Cao, Z. Tang, W.-M.
He, X, Xu, Green Chem., 2018, 20, 3683–3688.
[47] L.-Y. Xie, S. Peng, L.-H. Lu, J. Hu, W.-H. Bao, F. Zeng, Z. Tang, X. Xu,
W.-M. He, ACS Sustainable Chem. Eng., 2018, 6, 7989–7994.
[48] C. Wu, H.-J. Xiao, S.-W. Wang, M.-S. Tang, Z.-L. Tang, W. Xia, W.-F.
Li, Z. Cao, W.-M. He, ACS Sustainable Chem. Eng., 2019, 7,
2169–2175.
[49] J. Xu, W. Huang, R. Bai, Y. Queneau, F. Jerome, Y. Gu, Green Chem.,
2019, DOI: 10.1039/C8GC04000A.
[50] A. Taheri, C. Liu, B. Lai, C. Cheng, X. Pan, Y. Gu, Green Chem., 2014,
16, 3715–3719.
[51] S. Santra, A. Majee, A. Hajra, Tetrahedron Lett., 2011, 52,
3825–3827.
[52] R. Sanz, D. Miguel, F. Rodríguez, Angew. Chem. Int. Ed., 2008, 47,
7354–7357.
[53] G. Li, Y. Liu, J. Org. Chem., 2010, 75, 3526–3528.
[54] E. Álvarez, O. Nieto-Faza, C. Silva López, M. A. Fernán-
dez-Rodríguez, R. Sanz, Chem. Eur. J., 2015, 21, 12889–12893.
[38] S. Parisien-Collette, C. Cruché, X. Abel-Snape, S. K. Collins, Green
Chem., 2017, 19, 4798–4803.
[39] T. Tsuchimoto, H. Matsubayashi, M. Kaneko, E. Shirakawa, Y. Ka-
wakami, Angew. Chem. Int. Ed., 2005, 44, 1336–1340.
[40] T. Tsuchimoto, H. Matsubayashi, M. Kaneko, Y. Nagase, T. Miya-
mura, E. Shirakawa, J. Am. Chem. Soc., 2008, 130, 15823–15835.
[41] Z. Shi, S. Ding, Y. Cui, N. Jiao, Angew. Chem., Int. Ed., 2009, 48,
7895–7898.
Brönsted酸性离子液体催化α-羟基丙酮和2-苯基吲哚反应合成苯并[a]咔唑
李明浩a, 吴丰田a, 顾彦龙a,b,*
a华中科技大学化学与化工学院, 能量转换与存储材料化学教育部重点实验室,
材料化学与服役失效湖北省重点实验室, 湖北武汉430074
b中国科学院兰州化学与物理研究所羰基合成与选择氧化国家重点实验室, 甘肃兰州730000
摘要: 以生物质基平台化合物为原料合成含氧/氮杂环是实现生物质高值转化的重要途径. α-羟基丙酮可通过生物质分段
热解获得, 是一种重要的生物质平台化合物. 尽管吡嗪, 恶唑啉, 呋喃, 和喹喔啉等α-羟基丙酮衍生化杂环化合物已有报道,
但将α-羟基丙酮转化为其它类型杂环仍具有很大的吸引力.
苯并[a]咔唑化合物因其在医药和光学材料有广泛的应用而备受关注. 在过去二十年里, 开发出了许多合成苯并[a]咔
唑的方法, 其中从简单易得的2-苯基吲哚出发, 构建苯并[a]咔唑的方法最具吸引力, 但目前基于2-苯基吲哚合成苯并[a]咔
唑的报道只有4例: (1) ln(OTf)3催化2-苯基吲哚和炔丙基醚的[4+2]反应; (2) Pd催化2-苯基吲哚与端炔氧化环化; (3) Rh(III)
催化2-苯基吲哚与α-重氮羰基化合物串联环化; (4) BiCl3催化2-苯基吲哚与α-溴乙缩醛苯环化反应. 考虑到苯并[a]咔唑化