J. E. Namgoong et al. / Tetrahedron Letters 51 (2010) 167–169
169
8
6
4
2
In summary, a simple Hg2+-selective chemodosimetric system
based on naphthoflavothione was investigated. The signaling is
due to the Hg2+-induced desulfurization of flavothione. The trans-
formation induced Hg2+-selective chromogenic and fluorogenic
signaling behaviors of 1. The Hg2+-induced transformation from
thioketone to ketone might be used for the construction of novel
switching or signaling systems for Hg2+ ions.
8
4
0
Hg(II)
0
1
2
Equiv of Hg(II)
Supplementary data
Supplementary data associated with this article can be found, in
0
References and notes
370
420
470
520
Wavelength (nm)
570
620
670
1. (a) Nendza, M.; Herbst, T.; Kussatz, C.; Gies, A. Chemosphere 1997, 35, 1875; (b)
Boening, D. W. Chemosphere 2000, 40, 1335.
2. Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443.
Figure 4. Fluorescence titration of 1 with Hg2+ ions. [1] = 1.0 Â 10À5 M, H2O/CH3OH
(1:1) at pH 8.09 (10 mM tris buffer). kex = 350 nm.
3. (a) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386; (b)
Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. J. Am. Chem. Soc. 1999, 121,
5073; (c) Yang, Y.-K.; Yook, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760; (d)
Liu, B.; Tian, H. Chem. Commun. 2005, 3156; (e) Ros-Lis, J.; Marcos, M. D.;
Martínez-Máñez, R.; Rurack, K.; Soto, J. Angew. Chem., Int. Ed. 2005, 44, 4405; (f)
Yang, X.-F.; Li, Y.; Bai, Q. Anal. Chim. Acta 2007, 584, 95; (g) del Campo, O.;
Carbayo, A.; Cuevas, J. V.; Muñoz, A.; García-Herbosa, G.; Moreno, D.;
Ballesteros, E.; Basurto, S.; Gómez, T.; Torroba, T. Chem. Commun. 2008, 4576.
4. Chae, M.-Y.; Czarnik, A. W. J. Am. Chem. Soc. 1992, 114, 9704.
5. Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37,
1465.
8
1 + Hg(II) at 37ºC
6
1 + Hg(II) at 20ºC
4
6. (a) Song, K. C.; Kim, J. S.; Park, S. M.; Chung, K.-C.; Ahn, S.; Chang, S.-K. Org. Lett.
2006, 8, 3413; (b) Liu, W.; Xu, L.; Zhang, H.; You, J.; Zhang, X.; Sheng, R.; Li, H.;
Wu, S.; Wang, P. Org. Biomol. Chem. 2009, 7, 660.
7. (a) Wu, J.-S.; Hwang, I.-C.; Kim, K. S.; Kim, J. S. Org. Lett. 2007, 9, 907; (b) Lee, M.
H.; Cho, B.-K.; Yoon, J.; Kim, J. S. Org. Lett. 2007, 9, 4515.
2
8. Zhang, G.; Zhang, D.; Yin, S.; Yang, X.; Shuai, Z.; Zhu, D. Chem. Commun. 2005,
2161.
9. Choi, M. G.; Kim, Y. H.; Namgoong, J. E.; Chang, S.-K. Chem. Commun. 2009,
1 only
0
3560.
0
10
20
30
40
50
60
10. Corsaro, A.; Pistarà, V. Tetrahedron 1998, 54, 15027.
Time (min)
11. (a) Rani, R.; Rahmanana, M. F.; Bhalerao, U. T. Tetrahedron 1992, 48, 1953; (b)
Jørgensen, K. A.; Ghattas, A.-B. A. G.; Lawesson, S.-O. Tetrahedron 1982, 38,
1163; (c) Olah, G. A.; Arvanaghi, M.; Ohannesian, L.; Prakash, G. K. S. Synthesis
1984, 785; (d) Bonnat, M.; Durand, J.-O.; Le Corrè, M. Tetrahedron: Asymmetry
1996, 559.
Figure 5. Time trace of the Hg2+-signaling of 1. [1] = 5.0 Â 10À6 M, [Hg2+] = 5.0 Â
10À4 M. H2O/CH3OH (1:1) at pH 8.09 (10 mM tris buffer). kex = 350 nm.
12. Ellis, J.; Frier, R. D.; Schibeci, R. A. Aust. J. Chem. 1971, 24, 1527.
13. (a) Roshal, A. D.; Grigorovich, A. V.; Doroshenko, A. O.; Pivovarenko, V. G.;
Demchenko, A. P. J. Phys. Chem. A 1998, 102, 5907; (b) Zhou, L.-L.; Sun, H.; Li, H.-
P.; Wang, H.; Zhang, X.-H.; Wu, S.-K.; Lee, S.-T. Org. Lett. 2004, 6, 1071.
14. Elisei, F.; Lima, J. C.; Ortica, F.; Aloisi, G. G.; Costa, M.; Leitão, E.; Abreu, I.; Dias,
A.; Bonifácio, V.; Medeiros, J.; Maçanita, A. L.; Becker, R. S. J. Phys. Chem. A 2000,
104, 6095.
are somewhat undesirable for a practical applicability of napht-
hoflavothione as a Hg2+-selective chemodosimeter. On the other
hand, flavothiones such as 3-hydroxyflavothione, which has a clo-
sely related structure to 1, are known to be easily photodegraded.19
In the present case, the flavothione 1 was also found to be slowly
decomposed; however, spontaneous decomposition of 1 itself un-
der the same experimental conditions was rather slow and pro-
ceeded about 0.3% after 30 min and less than 2% even after 3 h
from preparation. These observations suggest that the selective
determination of Hg2+ ions by fluorescence enhancement could
be practically feasible with flavothione 1.
15. Aloisi, G. G.; Latterini, L.; Maçanita, A. L.; Becker, R. S.; Elisei, F. Phys. Chem.
Chem. Phys. 2003, 5, 3464.
16. Mastalerz, H.; Gibson, M. S. J. Chem. Soc., Perkin Trans. 1 1981, 2952.
17. Findlay, D. M.; McLean, R. A. N. Environ. Sci. Technol. 1981, 15, 1388.
18. The fluorescence quantum yields of 1 and 2 were determined by integrating
the area under the emission peak and correlating this value to the known
fluorescence quantum yield of anthracene (0.27 in EtOH). Melhuish, W. H. J.
Phys. Chem. 1961, 65, 229.
19. Tran, B. L.; Cohen, S. M. Chem. Commun. 2006, 203.