COMMUNICATIONS
Alkenes were distilled and treated with activated alumina to remove
impurities and alkyl hydroperoxide. The reaction was carried out in a glass
vial or a round-bottomed flask containing a magnetic stir bar under 1 atm
of molecular oxygen as described previously.[21] 2-Cyclohexen-1-one was
usually used as an internal standard. The homogeneous reaction solution
was periodically sampled and analyzed by gas chromatography on a TC-
WAX capillary column and by NMR spectroscopy. The amounts of oxygen
consumed were measured with a gas burette. It was confirmed for the
oxygenation of cyclooctene that no reaction proceeded without catalysts.
Turnover numbers were calculated as moles of products per mole of 1.
Cleavage of the Calkyl Caryl Bond of
[Pd CH2CMe2Ph] Complexes**
Â
Â
Juan Campora,* Enrique Gutierrez-Puebla,
Â
Jorge A. Lopez, Angeles Monge, Pilar Palma,*
Diego del Río, and Ernesto Carmona*
The cleavage and functionalization of strong C C single
bonds[1] by transition metal compounds is an important
transformation,[2±6] which is relevant to Ziegler± Natta catal-
ysis[7] and to other organometallic processes.[8, 9] Aryl elimi-
nation by activation of a b-Calkyl Caryl bond[5] is the micro-
scopic reverse of the migratory insertion of an alkene into a
M Caryl bond, a relevant step of the Heck reaction[8] and of the
SHOP process.[9] Herein we report on the conversion of a
Received: May 17, 2001 [Z17132]
[1] R. A. Sheldon, J. K. Kochi, Metal-Catalyzed Oxidations of Organic
Compounds, Academic Press, New York, 1981.
[2] Chlorohydrins: W. F. Richey, Kirk ± Othmer Encyclopedia of Chem-
ical Technology, Vol. 6, Wiley, New York, 1993, pp. 140.
[3] The Activation of Dioxygen and Homogeneous Catalytic Oxidation
(Eds.: D. H. R. Barton, A. E. Martell, D. T. Sawyer), Plenum, New
York, 1993.
[4] B. J. Wallar, J. D. Lipscomb, Chem. Rev. 1996, 96, 2625.
[5] B. Meunier, Chem. Rev. 1992, 92, 1411.
[6] J. T. Groves, R. Quinn, J. Am. Chem. Soc. 1985, 107, 5790.
[7] A. S. Goldstein, R. H. Beer, R. S. Drago, J. Am. Chem. Soc. 1994, 116,
2424.
[8] R. Neumann, M. A. Dahan, Nature 1997, 388, 353.
[9] C. L. Hill, I. A. Weinstock, Nature 1997, 388, 332.
[10] J. M. Thomas, R. Raja, G. Sanker, R. G. Bell, Nature 1999, 398, 227.
[11] R. G. Finke, H. Weiner, J. Am. Chem. Soc. 1999, 121, 9831.
[12] R. A. Sheldon, Top. Curr. Chem. 1993, 164, 22.
[13] C. L. Hill, C. M. Prosser-McCartha, Coord. Chem. Rev. 1995, 143, 407.
[14] T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 1996, 41, 113.
[15] I. V. Kozhevnikov, Chem. Rev. 1998, 98, 171.
[Pd CH2CMe2Ph] moiety into the corresponding phenyl
derivative, [Pd Ph] , and the subsequent functionalization of
the latter by conventional C2H4 migratory insertion chemistry
to produce C6H5CH CH2.
The cationic complex [Pd(CH2CMe2Ph)(dmpe)(PMe3)]
(1) (dmpe Me2PCH2CH2PMe2) can be generated by react-
ing the palladacycle [PdCH2CMe2-o-C6H4)(dmpe)] (2)[10] with
[HPMe3] BAr4 (Ar 3,5-C6H3(CF3)2). At 608 C it under-
+
CH2CMe2Ph
PMe3
P
P
P
P
[HPMe3]+BAr4
BAr4
Pd
Pd
[16] N. Mizuno, M. Misono, Chem. Rev. 1998, 98, 199.
[17] C. L. Hill, Activation and Functionalization of Alkanes, Wiley, New
York, 1989, p. 243.
[18] M. T. Pope, A. Müller, Angew. Chem. 1991, 103, 56; Angew. Chem. Int.
Ed. Engl. 1991, 30, 34.
2
1-BAr4
(1)
+
P
[19] R. Neumann, Prog. Inorg. Chem. 1998, 47, 317.
[20] The TON of 26 reported in ref. [6] is still one of the highest for the
epoxidation of cis-cyclooctene with 1 atm of molecular oxygen alone.
[21] N. Mizuno, C. Nozaki, I. Kiyoto, M. Misono, J. Am. Chem. Soc. 1998,
120, 9267.
60 °C
Pd
BAr4
P
PMe3
3-BAr4
[22] B. Meunier, A. Robert, G. Pratviel, J. Bernadou, The Porphyrin
Handbook, Academic Press, New York, 2000, p. 119.
[23] The oxygenation of adamantane was carried out under the following
conditions: 1, 11 mmol; solvent, 1,2-dichloroethane/benzene 8 mL/
Â
Â
[*] Dr. J. Campora, Dr. P. Palma, Prof. Dr. E. Carmona, Dr. J. A. Lopez,
D. del Río
2 mL; adamantane, 12.4 mmol; pO , 1 atm; reaction temperature,
2
Â
Departamento de Química Inorganica-Instituto
356 K; reaction time, 118 h. The conversion was 4% and the
selectivities for 1-adamantanol, 2-adamantanol, and 2-adamantanone
were 79, 11, and 10%, respectively.
de Investigaciones Químicas
Universidad de Sevilla-Consejo Superior de Investigaciones
Científicas
C/Americo Vespucio s/n, Isla de la Cartuja
41092 Sevilla (Spain)
[24] R. A. Sheldon, J. K. Kochi, Oxidation and Combustion Reviews,
Vol. 5, 1973, p. 135; R. Neumann, M. Dahan, J. Am. Chem. Soc. 1998,
120, 11969.
[25] The amount of oxygen consumed was 1.5 mmol when the amount of
cyclooctene oxide produced was 2.9 mmol. The corresponding con-
version was 16%.
Fax : (34)95-4460565
[26] C. Nozaki, I. Kiyoto, Y. Minai, M. Misono, N. Mizuno, Inorg. Chem.
1999, 38, 5724.
Â
Dr. E. Gutierrez-Puebla, Dr. A. Monge
Instituto de Ciencia de Materiales
Consejo Superior de Investigaciones Científicas
Campus de Cantoblanco, 28049 Madrid (Spain)
Â
Ä
[**] This work was supported by the Direccion General de Ensenanza
Â
Superior e Investigacion Científica (Project 1FD97-0919), the Minis-
Â
terio de Educacion y Ciencia (PFPI grant to D. del Rio), and the Junta
de Andalucia. J. A. L. thanks the CONACYT and the University of
Guanajuato (Mexico) for a fellowship.
Supporting information (kinetic data and reaction rates for the
transformation 1 !3 calyzed by 4) for this article is available on the
Angew. Chem. Int. Ed. 2001, 40, No. 19
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4019-3641 $ 17.50+.50/0
3641