Journal of the American Chemical Society
Page 4 of 5
REFERENCES
(1) For recent reviews: (a) Hartwig, J. F.; Larsen, M. A. ACS Cent. Sci.
1
2
3
4
2016, 2, 281; (b) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. -Q.
Chem. Rev. 2017, 117, 8754; (c) Gutekunst, W. R.; Baran, P. S. Chem.
Soc. Rev. 2011, 40, 1976; (d) Yamaguchi, J.; Yamaguchi, A. D.; Itami,
K. Angew. Chem. Int. Ed. 2012, 51, 8960.
(2) For selected examples: (a) Newhouse, T.; Baran, P. S. Angew.
Chem. Int. Ed. 2011, 50, 3362; (b) Liu, W.; Groves, J. T. Acc. Chem.
Res. 2015, 48, 1727; (c) Chen, M. S.; White, M. C. Science 2010, 327,
566; (d) Czaplyski, W. L.; Na, C. G.; Alexanian, E. J. J. Am. Chem.
Soc. 2016, 138, 13854; (e) Michaudel, Q.; Thevenet, D.; Baran, P. S.
J. Am. Chem. Soc. 2012, 134, 2547; (f) Chiappini, N. D.; Mack, J. B.
C.; Du Bois, J. Angew. Chem. Int. Ed. 2018, 130, 5050; (g) Larsen, M.
A.; Cho, S. H.; Hartwig, J. J. Am. Chem. Soc. 2016, 138, 762.
(3) (a) Engle, K. M. ; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res.
2012, 45, 788; (b) Tang, S.; Wang, P.; Li, H.; Lei, A. Nat. Commun.
2016, 7, 11676; (c) Shao, B.; Bagdasarian, A. L.; Popov. S.; Nelson, H.
M. Science 2017, 355, 1403; (d) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu,
C. J.; Knowles, R. R. 2016, 539, 268; (d) Chu, J. C. K.; Rovis, T. Na-
ture 2016, 539, 272; A recent report described two examples of C–C
bond formation using 1 equivalent of cyclooctane: (e) Margrey, K. A.;
Czaplyski, W. L.; Nicewicz, D. A.; Alexanian, E. J. J. Am. Chem. Soc.
2018, 140, 4213.
(4) (a) Liao, K.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.; Musaev, D.
G.; Davies, H. M. L. Nature 2018, 551, 609; (b) Liao, K.; Negretti, S.;
Musaev, D. G.; Basca, J.; Davies, H. M. L. Nature 2016, 533, 230.
(5) (a) Zuo, Z. W.; Ahneman, D. T.; Chu, L. L.; Terrett, J. A.; Doyle,
A. G.; MacMillan, D. W. C. Science 2014, 345, 437; (b) Shaw, M. H.;
Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W.
C. Science 2016, 352, 1304; (c) Shields, B. J.; Doyle, A.G. J. Am.
Chem. Soc. 2016, 138, 12719; (d) Heitz, D. R.; Tellis, J. C.; Molander,
G. A. J. Am. Chem. Soc. 2016, 138, 12715. (e) Shen, Y.; Gu, Y.; Mar-
tin, R. J. Am. Chem. Soc. 2018, 140, 12200–12209.
5
6
7
8
9
Figure 4. C(sp3)−H abstraction selectivity profile. (a) Evans–
Polanyi relationship for 27; (b) Hammett Plot for ethylbenzene
derivatives. See SI for -OPh Hammett-Brown value (s+).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Application of this method to late-stage functionalization
was also evaluated. Sclareolide, a model system for selective
C(sp3)−H oxidations, led to 51 in 40% combined yield at the
most electron-rich and sterically-accessible methylene sites,
which is orthogonal to reactivity exhibited by most transition
metal-based catalysts.23 Additionally, a ladderane core, the de-
rivatives of which are notoriously challenging to access, gave
52 in a modest 18% yield at 1.8 equivalents of substrate. The
closest reaction analog, a Mn(TMP)Cl catalyst system, deliv-
ered 40% of the chlorinated species and requires additional
steps to access a C−C bond.24
In summary, this reaction provides a general strategy to ac-
cess carbonyl derivatives directly from unactivated C(sp3)–H
bonds that is amenable both to early and late stage synthesis.
Site selectivity is predictable, arising from hydrogen atom ab-
straction by chlorine radical, and affords a synthetic comple-
ment to alternative approaches for achieving C–C bond for-
mation from alkanes. Our future efforts will be directed at elu-
cidating the mechanism of this process and developing strate-
gies to control the site-selectivity of C(sp3)–H functionaliza-
tion.
(6) While this manuscript was in preparation, a method for the arylation
of unactivated alkane substrates (5 equiv) using Ni/photoredox was re-
ported by the MacMillan lab: Perry, I. B.; Brewer, T. F.; Sarver, P. J.;
Schultz, D. M.; DiRocco, D. A.; MacMillan, D. W. C. Nature 2018,
560, 70.
(7) See supporting information for details.
(8) (a) Kochi, J. K., Ed. Free Radicals, Wiley-Interscience, New York,
1973; (b) Tedder, J. M. Tetrahedron 1982, 38, 313; (c) Afanas'ev, I. B.
Russian Chemical Reviews 1971, 40, 216.
ASSOCIATED CONTENT
(9) Price based on the purchase of phenyl chloroformate from
Oakwood chemical on April 19, 2018; (b) Zheng, M.; Xue, W.; Xue,
T.; Gong, H. Org. Lett. 2016, 18, 6152; (c) Otsuka, S.; Nakamura, A.;
Yoshida, T.; Naruto, M.; Ataka, K. J. Am. Chem. Soc. 1973, 95, 3180.
(10) (a) Shields, B. J.; Kudisch, B.; Scholes, G. D.; Doyle, A. G. J. Am.
Chem. Soc. 2018, 140, 3035; (b) Hwang, S. J.; Powers, D. C.; Maher,
A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.-L.; Chen, Y.-S.; Nocera,
D. G. J. Am. Chem. Soc. 2015, 137, 6472; (c) Hwang, S. J.; Anderson,
B. L.; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Organ-
ometallics 2015, 34, 4766; (d) Mondal, P.; Pirovano, P.; Das, A.; Far-
quhar, E. R.; McDonald, A. R. J. Am. Chem. Soc. 2018, 140, 1834.
(11) See Supporting Information for spectroscopic, computational, and
stoichiometric experiments that probe this proposed catalytic cycle.
(12) Ep = 0.4 V vs SCE in MeCN for (dtbbpy)Ni(COPh)Cl.
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website. Experimental procedures, computational data,
and characterization and spectral data for new compounds.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡L.K.G.A. and J.I.M.A. contributed equally.
(13) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R.
A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
Notes
The authors declare no competing financial interest.
(14) When chlorobenzene was submitted to the optimized reaction con-
ditions no product was detected at 3 equiv. of cyclohexane. See Figure
S8.
ACKNOWLEDGMENTS
(15) Lassner, E.; Schubert, W. -D. Tungsten Properties, Chemistry,
Technology of the Element, Alloys, and Chemical Compounds; Kluwer
Academic/ Plenum Publishers: New York, 1999; (b) (1) Barré, T.;
Arurault, L.; Sauvage, F. X. Spectrochim. Acta - Part A Mol. Biomol.
Spectrosc. 2005, 61, 551.
The authors gratefully acknowledge Jaron Mercer and the
Burns lab for their generous donation of [5]-ladderane; Dr.
István Pelczer for NMR assistance; Lotus Separations; and Ben
J. Shields, Stephen I. Ting, and Eric W. Webb for their helpful
advice. Financial support was provided by NIGMS (R01
GM100985 and R35 GM126986) and an F32 Ruth L Kirschtein
NRSA Fellowship under Award No. 5 F32 GM119364-02
(L.K.G.A.).
(16) (a) Hill, C. L.; Prosser-McCartha, C. M. Photocatalytic and Pho-
toredox Properties of Polyoxometalate Systems. In Photosensitization
and Photocatalysis Using Inorganic and Organometallic Compounds;
Kalyanasundaram, K., Grätzel, M., Eds.; Springer: Dordrecht, 1993; pp
ACS Paragon Plus Environment