8.34 (1 H, dd, J 9.5 and 2.5, NHAr H-5), 7.97 (1 H, d, J 9.5,
NHAr H-6), 7.4–7.3 (5 H, other Ph), 6.35 (1 H, t, JHF 55,
tion (15 cm3) was added, the aqueous layer extracted with ether
2
(4 × 15 cm3), the combined organic extracts washed with brine
(30 cm3), dried (MgSO4) and evaporated under reduced
pressure. Chromatography (SiO2, EtOAc–light petroleum,
12:88) gave the aldol 53 (72 mg, 31%); Rf (EtOAc–light petrol-
CHF2) and 3.98 (2 H, s, PhCH2); δC(CDCl3) 171.1, 147.7, 144.1,
139.6, 132.0, 130.0, 129.4, 128.6, 127.9, 122.9, 116.9, 114.5
(t, 1JCF 239, CHF2) and 60.4; m/z (EI) 350 (95%, Mϩ), 315 (80),
269 (30), 143 (55), 117 (PhCH2CN) and 91 (100 PhCH2)
(Found: Mϩ, 350.0825. C15H12F2N4O4 requires M, 350.0826).
1,1-Difluoro-3-phenylpentan-2-one (2,4-dinitrophenyl)hydra-
zone (0.41 g, 1.17 mmol), titanium trichloride (1.8 mol dmϪ3 in
water, 10 cm3) and dry 1,2-dimethoxyethane (60 cm3) were
refluxed under argon for 15 min, until no starting material was
visible by TLC. The mixture was cooled to room temperature
and water (50 cm3) was added. The aqueous layer was extracted
with ether (3 × 60 cm3), the combined organic extracts washed
with brine (100 cm3) and dried (MgSO4). The solvents were
distilled using a Vigreux column (oil-bath temperature 110 ЊC).
Chromatography of the residue (SiO2, light petroleum then
EtOAc–light petroleum, 20:80) gave the ketone 50 (90 mg,
45%) as an oil; Rf (ether–light petroleum, 15:85) 0.29;
νmax(CDCl3)/cmϪ1 1749 (C᎐O) and 1603 (Ph); δ (250 MHz;
eum, 20:80) 0.30; νmax(film)/cmϪ1 3364 (OH), 1702 (C᎐O), 1597
᎐
(Ph), and 1579 (Ph); δH(250 MHz; CDCl3) 8.05 (2 H, dd, J 8.5
and 1, PhCO o-H), 7.7–7.3 (8 H, m, other Ph), 5.39 (1 H,
ddd, 3JHH 4.5, 2JHF 18.5 and 4.5, CHOH) and 3.04 (1 H, d, J 4,
OH).
Acknowledgements
We thank the EPSRC and Zeneca Argrochemicals for a CASE
award (R. S. R.).
References
1 E. J. Corey, M. A. Tius and J. Das, J. Am. Chem. Soc., 1980, 102,
1742.
2 I. Fleming and U. Ghosh, J. Chem. Soc., Perkin Trans. 1, 1994, 257.
3 I. Fleming, R. S. Roberts and S. C. Smith, J. Chem. Soc., Perkin
Trans. 1, 1998, 1209.
4 H. J. Reich, R. C. Holtan and C. Bolm, J. Am. Chem. Soc., 1990,
112, 5609.
5 D. Wittenberg, T. C. Wu and H. Gilman, J. Org. Chem., 1959, 24,
1349; E. Vedejs, M. J. Arnost, J. M. Eustache and G. A. Krafft,
J. Org. Chem., 1982, 47, 4384; G. A. Krafft and P. T. Meinke, J. Am.
Chem. Soc., 1988, 110, 8671; M. Koreeda and S. Koo, Tetrahedron
Lett., 1990, 31, 831; A. G. M. Barrett, J. M. Hill and E. W. Wallace,
J. Org. Chem., 1992, 57, 386.
6 G. H. Dodd, B. T. Golding and P. V. Ioannou, J. Chem. Soc., Perkin
Trans. 1, 1976, 2273.
7 D. J. Ager, Org. React. (N.Y.), 1990, 38, 1.
8 P. F. Hudrlik, R. H. Schwartz and A. K. Kulkarni, Tetrahedron
Lett., 1979, 2233; P. F. Hudrlik, G. Nagendrappa, A. K. Kulkarni
and A. M. Hudrlik, Tetrahedron Lett., 1979, 2237.
9 M. S. Biernbaum and H. S. Mosher, J. Am. Chem. Soc., 1971, 93,
6221; A. G. Brook and J. D. Pascoe, J. Am. Chem. Soc., 1971, 93,
6224.
10 P. F. Hudrlik, A. M. Hudrlik and A. K. Kulkarni, J. Am. Chem.
Soc., 1982, 104, 6809; S. R. Wilson, M. S. Hague and R. N. Misra,
J. Org. Chem., 1982, 47, 747; R. J. Linderman and A. Ghannam,
J. Am. Chem. Soc., 1990, 112, 2392.
11 M. J. Tozer and T. F. Herpin, Tetrahedron, 1996, 52, 8619; J. T.
Welch, Tetrahedron, 1987, 43, 3123; Selective Fluorination in Organic
and Biological Chemistry, ed. J. T. Welch, ACS Symposium series
456, ACS, Washington DC, 1991; M. H. Gelb, J. P. Svaren and R. H.
Abeles, Biochemistry, 1985, 24, 1813; S. Thaisrivongs, D. T. Pals,
W. M. Kati, S. R. Turner, L. M. Thamasco and W. Watt, J. Med.
Chem., 1986, 29, 2080; M. H. Gelb, J. Am. Chem. Soc., 1986, 108,
3146.
12 M. Yamana, T. Ishihara and T. Ando, Tetrahedron Lett., 1983, 24,
507; T. Ishihara, T. Yamanaka and T. Ando, Chem. Lett., 1984,
1165; M. Kuroboshi and T. Ishihara, Tetrahedron Lett., 1987, 28,
6481; M. Kuroboshi and T. Ishihara, Bull. Chem. Soc. Jpn., 1990, 63,
428; K. Iseki, Y. Kuroki, D. Asada and Y. Kobayashi, Tetrahedron
Lett., 1997, 38, 1447.
13 T. Brigaud, P. Doussot and C. Portella, J. Chem. Soc., Chem.
Commun., 1994, 2117; C. Portella and B. Dondy, Tetrahedron Lett.,
1991, 32, 83; B. Dondy, P. Doussot and C. Portella, Synthesis, 1992,
995; B. Dondy and C. Portella, J. Org. Chem., 1993, 58, 6671;
P. Doussot and C. Portella, J. Org. Chem., 1993, 58, 6675; B. Dondy,
P. Doussot and C. Portella, Tetrahedron Lett., 1994, 35, 409.
14 F. Jin, B. Jiang and Y. Xu, Tetrahedron Lett., 1992, 33, 1221; F. Jin,
Y. Xu and W. Huang, J. Chem. Soc., Perkin Trans. 1, 1993, 795.
15 H. Schubert, J. Prakt. Chem., 1956, 3, 146.
᎐
H
CDCl3) 7.4–7.1 (5 H, m, Ph), 5.78 (1 H, t, 2JHF 54, CHF2) and
3.98 (2 H, s, PhCH2); δC(CDCl3) 196.8 (t, 2JCF 26.5, COCHF2),
131.3, 129.7, 128.9, 127.6, 109.8 (t, 1JCF 253, CHF2) and 43.0.
1,1,1-Trifluoro-2-methyl-3-phenylpropan-2-ol 5145
Following the procedure for the synthesis of silyl enol ether 47a
(Method B), trifluoromethyl ketone 48 (0.25 mmol, 1.64 mmol)
in dry ether (15 cm3) was treated with the reagent formed from
methylmagnesium bromide (3.0 mol dmϪ3 in ether, 0.55 cm3)
and tert-butyldiphenylsilyllithium (0.26 mol dmϪ3 in THF, 6.3
cm3) for 20 min at Ϫ78 ЊC and 50 min at 0 ЊC. Standard work-
up and chromatography (SiO2, EtOAc–light petroleum, 1:99)
gave alcohol 51 (0.20 g, 61%); Rf (EtOAc–light petroleum,
20:80) 0.33; νmax(film)/cmϪ1 3464 (br OH) and 1606 (Ph);
δH(250 MHz; CDCl3) 7.4–7.2 (5 H, m, Ph), 3.10 (1 H, d, J 14,
PhCHAHB), 2.84 (1 H, d, J 14, PhCHAHB), 1.98 (1 H, s, OH)
and 1.28 (3 H, s, Me); δC(CDCl3) 134.4, 130.8, 128.4, 127.2, 73.7
(q, J 28, CF3), 40.8 and 20.5; m/z (EI) 204 (25%, Mϩ) and 91
(100, PhCH2) (Found: Mϩ, 204.0766. C10H11F3O requires M,
204.0762).
Chromatography also gave tert-butyl(diphenyl)silane 52 (0.30
g, 76%) as an oil; Rf (ether–light petroleum, 2:98) 0.55;
νmax(CDCl3)/cmϪ1 2113 (Si᎐H), 1588 (Ph) and 1111 (SiPh);
δH(250 MHz; CDCl3) 7.87 (4 H, dd, J 5.5 and 2, o-H), 7.54 (6 H,
m, m- and p-H), 4.88 (1 H, s, SiH) and 1.28 (9 H, s, CMe3);
δC(CDCl3) 135.9, 134.2, 129.6, 128.0, 27.8 and 18.0.
2,2-Difluoro-3-hydroxy-1,3-diphenylpropan-1-one 5346
Method A. Silyl enol ether 47a was prepared following the
procedure detailed in Method B, and was worked up prior to
chromatography. The crude silyl enol ether in dry dichloro-
methane (20 cm3) was added to a stirred solution of benz-
aldehyde (0.87 cm3, 8.6 mmol) in dry dichloromethane at
Ϫ78 ЊC. Titanium tetrachloride (1.0 mol dmϪ3 in dichloro-
methane, 10.7 cm3) was added, the solution stirred for 15 min,
warmed to Ϫ15 ЊC and stirred overnight, warming to room
temperature and forming a brown precipitate. Water (100 cm3)
and saturated potassium sodium tartrate solution (100 cm3)
were added, the aqueous layer extracted with EtOAc (3 × 100
cm3), the combined organic extracts washed with brine (150
cm3), dried (MgSO4) and evaporated under reduced pressure.
Chromatography (SiO2, EtOAc–light petroleum, 12:88) gave
the aldol 53 (0.715 g, 38%), inseparable from dimethyl-
(phenyl)silanol (0.30 g), identical to an authentic sample.
Method B. Titanium tetrachloride (1.32 cm3 of a 1.0 mol
dmϪ3 solution in CH2Cl2, 1.32 mmol) was added to a solution
of pure silyl enol ether 47b (346 mg, 0.88 mmol) and benz-
aldehyde (0.11 cm3, 1.06 mmol) in dichloromethane (10 cm3) at
Ϫ78 ЊC, and the mixture was stirred overnight, warming to
room temperature. Saturated potassium sodium tartrate solu-
16 K. Rühlmann, Synthesis, 1971, 236.
17 B. B. Corson, W. L. Benson and T. T. Goodwin, J. Am. Chem. Soc.,
1930, 52, 3988.
18 J. Cossy and P. Pale, Tetrahedron Lett., 1987, 28, 6039.
19 I. Dyong and H. P. Bertram, Chem. Ber., 1973, 106, 1743.
20 H. Teichmann and V. Prey, Justus Liebigs Ann. Chem., 1970, 732,
121.
21 G. J. D. Peddle, J. Organomet. Chem., 1967, 27, 2311.
22 G. A. Molander and G. Hahn, J. Org. Chem., 1986, 51, 1135.
23 W. Lidy and W. Sundermeyer, Chem. Ber., 1973, 106, 587.
24 R. Roger, J. Chem. Soc., 1925, 127, 518.
J. Chem. Soc., Perkin Trans. 1, 1998
1227