Inorg. Chem. 2005, 44, 2140−2142
Selected-Control Synthesis of Metal Phosphonate Nanoparticles and
Nanorods
Shu-Yan Song, Jian-Fang Ma,* Jin Yang, Min-Hua Cao, and Ke-Chun Li
Department of Chemistry, Northeast Normal UniVersity, Changchun 130024, P. R. China
Received November 7, 2004
By surfactant-assisted methods, nanoscale Co(O3PC6H5)
‚
H2O
methods for the synthesis of nanoscale metal phosphonate
proves to be intriguing and valuable.
species of different morphologies, namely, nanoparticles and
nanorods, have been successfully synthesized and characterized.
Upon removal of the organic part of the compound, peculiar
Co2P2O7 porous nanorods formed.
Surfactant-assisted methods have been widely used in the
preparation and morphology control of materials such as
silica particles, silica nanotubes, carbon nanotubes, and CdS
and CdSe nanorods.8 The surfactant plays an important role
in determining the morphology of the products, as surfactant
mesophases have proved to be useful and versatile soft
templates that can form different conformations by self-
assembly and lead to the formation of different nanostruc-
tures.9 Herein, we report a successful method using surfac-
tants, namely, cetyltrimethylammonium bromide (CTAB)
and sodium dodecyl benzene sulfonate (SDBS), for the
preparation of Co(O3PC6H5)‚H2O nanoparticles and nanorods
under different conditions.
Nanometer-scale materials have attracted intensive atten-
tion in the past decades because of their unique physical and
chemical properties and potential applications in nanodevices
and functional materials.1 Great progress has been made in
the fabrication of inorganic and organic nanosize materials,
such as carbon nanotubes, metal nanorods, metal oxides
nanowires, and polyaniline nanoparticles.2-5 However, to the
best of our knowledge, few reports on the synthesis of
nanoscale metal phosphonates have been published to date.6
Owing to their specific characteristics and potential applica-
tions as sorbents, sensors, catalysts, ion exchangers, ionic
conductors, and nonlinear optical materials,7 exploring proper
Co(O3PC6H5)‚H2O, which exhibits peculiar and fascinating
magnetic properties including magnetic ordering, canted
antiferromagnetism, and antiferromagnetic resonance, has
been studied as a model for two-dimensional (2D) magne-
tism.10 The properties of inorganic and organic hybrid
materials, such as catalytic activity, sensitivity, conductivity,
and photonic efficiency, are often closely related to their
chemical composition, size, crystal structure, surface chem-
istry, and shape.11 Nanorods and nanoparticles often offer
larger surface areas than the corresponding solid films or
bulk materials. The ability to synthetically tune these material
parameters, especially their size and morphology, then proves
* To whom correspondence should be addressed. E-mail:
(1) (a) Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.;
Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen,
M. T.; Russell, T. P. Science 2000, 290, 2126. (b) Nicewarner-Pena,
S. R.; Griffith Freeman, R.; Reiss, B. D.; He, L. Pena, D. J.; Walton,
I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Science 2001, 294,
137. (c) Lu, L.; Wohlfart, A.; Parala, H.; Birkner, A.; Fischer, R. A.
Chem. Commun. 2003, 40. (d) Xia, Y. N.; Yang, P. D.; Sun, Y.; Wu,
Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. AdV. Mater.
2003, 15, 353. (e) Rao, C. N. R.; Satishkumar, B. C.; Govindaraj, A.
Chem. Commun. 1997, 1581.
(2) (a) Iijima, S. Nature 1991, 56, 354. (b) Trasobares, S.; Ewels, C. P.;
Birrell, J.; Stephan, O.; Wei, B. Q.; Carlisle, J. A.; Miller, D.;
Keblinski, P.; Ajayan, P. M. AdV. Mater. 2004, 16, 610.
(3) (a) Liu, Z.; Bando, Y. AdV. Mater. 2003, 15, 303. (b) Chang, S.; Yoon,
S.; Park, H.; Sakai, A. Mater Lett. 2001, 53, 432. (c) Ah, C. S.; Hong,
S. D.; Jang, D.-J. J. Phys. Chem. B 2001, 105, 7871.
(4) (a) Rao, C. N. R.; Deepak, F. L.; Gundiah, G.; Govindaraj, A. Prog.
Solid State Chem. 2003, 31, 5. (b) Li, C.; Zhang, D.; Han, S.; Liu, X.;
Tang, T.; Zhou, C. AdV. Mater. 2003, 15, 143. (c) Huang, M.; Mao,
S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang,
P. Science 2001, 292, 1897. (d) Dai, Z. R.; Gole, J. L.; Stout, J. D.;
Wang, Z. L. J. Phys. Chem. B. 2002, 106, 1274. (e) Jiang, X.; Herricks,
T.; Xia, Y. Nano Lett. 2002, 2, 1333.
(5) (a) Kim, B.-J.; Oh, S.-G.; Han, M.-G.; Im, S.-S. Langmuir 2000, 16,
5841. (b) Kim, D.; Choi, J.; Kim, J.-Y.; Han, Y.-K. Sohn, D.
Macromolecules 2002, 35, 5314.
(7) (a) Cheetham, A. K.; fe´rey, G.; Loiseau, T. Angew. Chem., Int. Ed.
1999, 38, 3628. (b) Clearfield, A. Chem. Mater. 1998, 10, 2801. (c)
Dines, M. B.; DiGiacomo, P. M. Inorg. Chem. 1981, 20, 92.
(8) (a) Chan, H. B. S.; Budd, P. M.; Naylor, T. V. J. Mater. Chem. 2001,
12, 2068. (b) Lin, H. P.; Mou, C. Y.; Lin, S. B. AdV. Mater. 2000, 12,
103. (c) Gong, X.; Liu, J.; Baskaran, S.; Voise, R. D.; Young, J. S.
Chem. Mater. 2000, 12, 1049. (d) Chen, C. C.; Chao, C. Y.; Lang, Z.
H. Chem. Mater. 2000, 12, 1516.
(9) (a) Cao, M.; Hu, C.; Wang, Y.; Guo, Y.; Guo, C.; Wang, E. Chem.
Commun. 2003, 1884. (b) Puntes, V. F.; Zanchet, D.; Erdonmez, C.
K.; Alivisatos, A. P. J. Am. Chem. Soc. 2002, 124, 12874. (c) Li, Y.
D.; Li, X. L.; Deng, Z. X.; Zhou, B.; Fan, S.; Wang, J.; Sun, X. Angew.
Chem., Int. Ed. 2002, 41. 333.
(10) Culp, J.; Fanucci, G.; Watson, B.; Morgan, A. N.; Backov, R.; Ohnuki,
H.; Meisel, M.; Talham, D. J. Solid State Chem. 2001, 159, 362.
(11) (a) Zhu, Y.-C.; Bando, Y.; Xue, D.-F.; Golberg, D. AdV. Mater. 2004,
16, 831. (b) Bonchio, M.; Carraro, M.; Scorrano, G.; Bagno, A. AdV.
Synth. Catal. 2004, 346, 648. (c) Johnson, C. J.; Edler, K. J.; Mann,
S.; Murphy, C. J. J. Mater. Chem. 2002, 2909.
(6) Wang, Z.; Heising, J. M.; Clearfield, A. J. Am. Chem. Soc. 2003, 34,
10375.
2140 Inorganic Chemistry, Vol. 44, No. 7, 2005
10.1021/ic048436t CCC: $30.25
© 2005 American Chemical Society
Published on Web 03/10/2005