A. Alberola et al. / Journal of Organometallic Chemistry 692 (2007) 2750–2760
2759
64.47; H 7.57; N 5.01%. dH (CDCl3) 1.32 (s, 18H), 7.41 (t,
Acknowledgements
1H), 7.70 (dd, 1H), 7.95 (dd, 1H). m/z (EI) 279.1 (M+,
100%).
We would like to thank the EPSRC for financial support
(R.J.L. and R.J.C.); Homerton College and Jesus College
Cambridge for Fellowships (A.A. and J.B. respectively);
Prof. Coronado at the University of Valencia for use of
the SQUID magnetometer and; Prof. Sanders (University
of Cambridge) for access to the PC Spartan Pro software
for preliminary DFT calculations.
Chlorination of C6H3(CN)(StBu)2 (1.0 g, 3.5 mmol) in
CCl4 (20 ml) under ambient conditions yielded an orange
solution of C6H3(CN)(SCl)2. The solvent was removed in
vacuo and the oily residue redissolved in CH2Cl2 (20 ml).
This was treated with Me3SiN3 (0.4 ml, 5 mmol) to yield
the salt [3-NCBDTA][Cl]. Reduction with Ag powder in
l. SO2 (20 ml) yielded 3-NCBDTA (0.236 g, 35%) which
was purified by vacuum sublimation. Analysis found: C
49.46; H 1.73; N 15.24; C7H3S2N2 requires: C 49.9; H
1.68; N 15.63%.
References
[1] A.M. Reed, J.M. Tour, Sci. Am. 86 (2002) 282;
M.D. Ward, Chem. Soc. Rev. 24 (1995) 121.
[2] Ch. Bosshard, K. Sutter, Ph. Pretre, J. Hulliger, M. Florsheimer, P.
Kaatz, P. Gunter, Organic Nonlinear Optical Materials, Gordon and
Breach, Basel, 1995.
6.2. Synthesis of 4-NCBDTA
3,4-Dichlorobenzonitrile (2 g, 11.6 mmol) was dissolved
in 1,3-dimethyl-2-imidazolidinone (20 ml). Sodium butyl
thiolate (4.7 g, 43 mmol) was added and the mixture heated
to 60ꢁC for 24 h. After cooling room temperature, water
(100 ml) was added and the mixture extracted with diethyl
ether (3 · 75 ml). The organic extracts were combined and
washed with water and brine, and the solvent removed in
vacuo. The product was recrystallised from diethylether to
afford pure C6H3(CN)(StBu)2 (2 g, 61%). Analysis found:
C 64.81; H 7.63; N 4.98. C15H21S2N requires: C 64.47; H
7.57; N 5.01%. dH (CDCl3) 1.41 (s,18H), 7.47 (dd, 1H),
7.68 (d,1H), 7.85 (d, 1H). m/z (EI) 279.1 (M+, 100%).
Chlorination of C6H3(CN)(StBu)2 (1.0 g, 3.5 mmol) in
CCl4 (20 ml) under ambient conditions yielded an orange
solution of C6H3(CN)(SCl)2. The solvent was removed in
vacuo and the oily residue redissolved in CH2Cl2 (20 ml).
This was treated with Me3SiN3 (0.4 ml, 5 mmol) to yield
the salt [4-NCBDTA][Cl]. The salt was reduced with Ag
powder in l. SO2 (20 ml) to yield 4-NCBDTA (0.314 g,
46%) which was purified by vacuum sublimation. Analysis
found: C 46.91; H 1.70; N 15.62. C7H3S2N2 requires: C
49.91; H 1.68; N 15.63%.
[3] B.E. Bowler, A.L. Raphael, H.B. Gray, Prog. Inorg. Chem. 38 (1990)
259.
[4] J.S. Miller, A.J. Epstein, Angew. Chem. Int. Ed. Engl. (1994) 385.
[5] M.D. Hollingsworth, Science (2002) 2410.
[6] See for example: J.P.M. Lommerse, W.D.S. Motherwell, H.L.
Ammon, J.D. Dunitz, A. Gavezzotti, D.W.M. Hofmann, F.J.J.
Leusen, W.T.M. Mooij, S.L. Price, B. Schweizer, M.U. Schmidt,
B.P. van Eijck, P. Verwer, D.E. Williams, Acta Crystallogr. B 56
(2000) 697.
[7] W. Fujita, K. Awaga, Science (1999) 281;
G.D. McManus, J.M. Rawson, N. Feeder, J. van Duijn, E.J.L.
McInnes, J.J. Novoa, R. Burriel, F. Palacio, P. Oliete, J. Mater.
Chem. 11 (2001) 1992.
[8] J.L. Brusso, O.P. Clements, R.C. Haddon, M.E. Itkis, A.A. Leitch,
R.T. Oakley, R.W. Reed, J.F. Richardson, J. Am. Chem. Soc. 126
(2004) 14692;
J.L. Brusso, O.P. Clements, R.C. Haddon, M.E. Itkis, A.A. Leitch,
R.T. Oakley, R.W. Reed, J.F. Richardson, J. Am. Chem. Soc. 126
(2004) 8256;
T.M. Barclay, A.W. Cordes, N.A. George, R.C. Haddon, R.T.
Oakley, T.T.M. Palstra, G.W. Patenaude, R.W. Reed, J.F. Richard-
son, H. Zhang, J. Chem. Soc., Chem. Commun. (1997) 873.
[9] H. Matsuzaki, W. Fujita, K. Awaga, H. Okamoto, Phys. Rev. Lett.
91 (2003) 017403;
W. Fujita, K. Awaga, Chem. Phys. Lett. 393 (2004) 150.
[10] G.R. Desiraju, in: Crystal Engineering: The Design of Organic
SolidsMaterials Science Monographs, vol. 54, Elsevier Press, 1989.
[11] See for example A.D. Bod, J. Griffiths, J.M. Rawson, J. Hulliger,
Chem. Commun. (2001) 2488, and refs therein. See also [10] and
references therein.
[12] T. Chivers, K. McGregor, M. Parvez, I. Vargas-Baca, T. Ziegler,
Can. J. Chem. (1995) 1380.
[13] A.J. Banister, N. Bricklebank, I. Lavender, J.M. Rawson, C.I.
Gregory, B.K. Tanner, W. Clegg, M.R.J. Elsegood, F. Palacio,
Angew. Chem., Int. Ed. Engl. 35 (1996) 2533.
[14] E.G. Awere, N. Burford, C. Mailer, J. Passmore, M.J. Schriver, P.S.
White, A.J. Banister, M. Oberhammer, L.H. Sutcliffe, J. Chem. Soc.,
Chem. Commun. (1987) 66.
[15] A. Alberola, R.J. Collis, S.M. Humphrey, R.J. Less, J.M. Rawson,
Inorg. Chem. 45 (2006) 1903.
[16] A. Alberola, R.J.Collis, R.J. Less, J.M. Rawson, J. Organomet.
[17] D. Sellmann, K.P. Peters, R.M. Molina, F.W. Heinemann, Eur. J.
Inorg. Chem. 5 (2003) 903.
6.3. Theoretical calculations
6.3.1. Experimental
Preliminary UHF DFT calculations (LSDA/pBP86/
DN*) were carried out within Spartan Pro [26]. This
approach utilises a perturbative Becke-Perdew (pBP86)
procedure [27] within the local spin density approximation
LSDA. Instead of Gaussian basis sets, Spartan Pro utilises
atomic solutions supplemented with d-type functions for
heavy atoms, including numerical polarisation (DN*). It
is generally considered that the pBP86 method compares
most closely to the Gaussian B88-P86 method, whilst the
DN* basis set is close to 6-311+G*. Comparisons of
DFT methods can be found in articles cited in Ref. [28].
Initial trial geometries were determined using semi-empiri-
cal methods (PM3) and then optimised freely. All
structures were stationary points with no imaginary fre-
quencies consistent with energy minima.
[18] S.M. Mattar, Chem. Phys. Lett. 300 (1999) 542;
Y.-L. Chung, S.A. Fairhurst, D.G. Gillies, G. Kraft, A.M.L.
¨
Krebber, K.F. Preston, L.H. Sutcliffe, G. Wolmershauser, Magn.
Reson. Chem. 30 (1992) 774.