2950
Organometallics 2007, 26, 2950-2952
A Strange Nickel(I)-Nickel(0) Binuclear Complex and Its
Unexpected Ethylene Oligomerization
Zhiqiang Weng,*,† Shihui Teo,† Zhi-Pan Liu,*,‡ and T. S. Andy Hor*,†
Department of Chemistry, National UniVersity of Singapore, 3 Science DriVe 3, Kent Ridge,
Singapore 117543, and Department of Chemistry, Fudan UniVersity, Shanghai 200433,
People’s Republic of China
ReceiVed February 10, 2007
Summary: The unusual heteroValent bimetallic NiI-Ni0 complex
{[η-C5H4CHdN(C6F5)]Fe[η-C5H4PPh2]}2Ni2(Cl) (2) was iso-
lated from the reaction between [η-C5H4CHdN(C6F5)]Fe[η-
C5H4PPh2] (1) and Ni(COD)2 in the presence of AlEtCl2 or
AlCl3. Complex 2 has been crystallographically characterized
and theoretically analyzed; it is catalytically actiVe (TOF
90 500) and selectiVe (91%) toward the formation of C4
oligomers from ethylene (300 psi) at 30 °C, the only other
significant isomer formed being C6.
We have recently isolated the rare three-coordinate NiI
complex [η-C5H4CHdN(C6H5)]Fe[η-C5H4P(t-Bu)2]NiICl and
the unusual bimetallic Ni0-AlIII complex [η-C5H4CHdN(C6F5)]-
Fe[η-C5H4PPh2]Ni(AlMe3).9 These successes have encouraged
us to extend the use of unsaturated metals carrying a hybrid
ligand8 to design new low-valent Ni catalysts. In this com-
munication, we report the isolation of an intriguing NiI-Ni0
bimetallic complex that is more active than its NiII and Ni0
counterparts. Although bimetallic catalysts have exhibited some
advantages in certain systems such as selective hydrogenation,10
asymmetric epoxide opening reactions,11 and copolymeriza-
tion,12 the use of such a system in ethylene oligomerization is
still less developed.13
Reaction between Ni0(COD)2 (COD ) 1,5-cyclooctadiene)
and the hybrid ligand [C5H4CHdN(C6F5)]Fe(η-C5H4PPh2) (1)
in toluene in the presence of a polymerization promoter such
as AlEtCl2 or AlCl3 gives 57% yield of an air- and moisture-
sensitive red solid formulated as {[η-C5H4CHdN(C6F5)]Fe[η-
C5H4PPh2]}2Ni2Cl (2) (eq 1). The solid form is fairly stable
(for days) under an inert atmosphere at room temperature, while
its solution shows minimum decomposition after 2 days at -30
°C. Complex 2 is unusual. The oxidation self-selects to stop at
the stage of a binuclear NiI-Ni0 species. We also could not
detect any binuclear NiI or any major NiII or Ni0 products under
the experimental conditions. Its paramagnetism frustrates any
reasonable NMR analyses. In view of its unusual formulation,
Nickel is the “disturbing” element in Ziegler’s Nobel-winning
work in ethylene polymerization.1 Its salt is the source of the
“nickel effect” that accounts for the premature polymer termina-
tion.2 Today, five decades later, research in this area has led to
the development of Ni-based systems that catalyze the growth
of the C6-C20 linear R-olefin (LAO) industry.3 Inspired by the
SHOP process,4 different teams (e.g., Brookhart,5 DuPont,6
Grubbs,7 Braunstein,8 etc.) have designed a number of elegant
olefin oligomerization catalysts. Notable challenges remain,
however, such as activity under ambient conditions, selectivity
over specific oligomers (e.g., C6 LAO), ambiguous mechanistic
details, etc. Interestingly, virtually all known Ni-based LAO
catalysts are NiII systems. The role of low-valent nickel in this
technologically significant process is virtually unknown. Our
objective is to design and synthesize suitable low-valent Ni
model complexes that could help in the promotion and
understanding of Ni-based ethylene oligomerization.
* To whom correspondence should be addressed. E-mail: chmwz@
nus.edu.sg (Z.W.); andyhor@nus.edu.sg (T.S.A.H.).
(9) (a) Weng, Z.; Teo, S.; Koh, L. L.; Hor, T. S. A. Angew. Chem., Int.
Ed. 2005, 44, 7560. (b) Weng, Z.; Teo, S.; Koh, L. L.; Hor, T. S. A. Chem.
Commun. 2006, 1319.
(10) (a) Vannice, M. A.; Sen, B. J. Catal. 1989, 115, 65. (b) Gallezot,
P.; Richonel, D. Catal. ReV. Sci. Eng. 1998, 40(1&2), 81. (c) Lafaya, G.;
Ekou, T.; Micleaud-Especel, C.; Montassier, C.; Marecot, P. App. Catal. A
2004, 257, 107.
† National University of Singapore.
‡ Fudan University.
(1) (a) Boor, J. Ziegler-Natta Catalysts and Polymerizations; Academic
Press: New York, 1979. (b) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin,
H. Angew. Chem. 1955, 67, 541.
(2) (a) Ziegler, K.; Gellet, H. G.; Holakamp, E.; Wilke, G. Brennst.-
Chem. 1954, 35, 321. (b) Fisher, K.; Jonas, K.; Misbach, P.; Stabba, R.;
Wilke, G. Angew. Chem., Int. Ed. Engl. 1973, 12, 943.
(11) (a) Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123,
2687. (b) Jacobsen, E. N.; Wu, M. H. In ComprensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: New
York, 1999; pp 1309-1326. (c) Jacobsen, E. Acc. Chem. Res. 2000, 33,
412.
(12) (a) Raebiger, J. W.; Turner, J. W.; Noll, B. C.; Curtis, C. J.;
Miedaner, A.; Cox, B.; DuBois, D. L. Organometallics 2006, 25, 3345. (b)
Guo, N.; Li, L.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 6542. (c) van
den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998, 54, 12985. (d) Peng,
W.-J.; Train, S. G.; Howell, D. K.; Fronczek, F. R.; Stanley, G. G. Chem.
Commun. 1996, 2607.
(13) (a) Champouret, Y. D. M.; Fawcett, J.; Nodes, W. J.; Singh, K.;
Solan, G. A. Inorg. Chem. 2006, 45, 9890. (b) Taquet, J.-P.; Siri, O.;
Braunstein, P.; Welter, R. Inorg. Chem. 2006, 45, 4668. (c) Hu, T.; Tang,
L-M.; Li, X.-F.; Li, Y.-S.; Hu, N.-H. Organometallics 2005, 24, 2628. (d)
Luo, H.-K.; Schumann, H. J. Mol. Catal. A: Chem. 2005, 227, 153. (e)
Jie, S.; Zhang, D.; Zhang, T.; Sun, W.-H.; Chen, J.; Ren, Q.; Liu, D.; Zheng,
G.; Chen. W. J. Organomet. Chem. 2005, 690, 1739. (f) Zhang, D.; Jin,
G.-X. Organometallics 2003, 22, 2851. (g) Mi, X.; Ma, Z.; Wang, L.; Ke,
Y.; Hu, Y. Macromol. Chem. Phys. 2003, 204, 868. (h) Gibson, V. C.;
Halliwell, C. M.; Long, N. J.; Oxford, P. J.; Smith, A. M.; White, A. J. P.;
Williams, D. J. Dalton Trans. 2003, 918. (i) Tomov, A.; Kurtev, K. J. Mol.
Catal. A: Chem. 1995, 103, 95. (j) Kurtev, K.; Tomov, A. J. Mol. Catal.
1994, 88, 141.
(3) Wilke, G. Angew. Chem., Int. Ed. 2003, 42, 5000.
(4) (a) Keim, W.; Kowaldt, F. H.; Goddard, R.; Kru¨ger, C. Angew. Chem.,
Int. Ed. 1978, 17, 466. (b) Ostoja Starzewski, K. A.; Born, L. Organome-
tallics 1992, 11, 2701.
(5) (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000, 100,
1169. (b) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414. (c) Killian, C. M.; Tempel, D. J.; Johnson, L. K.;
Brookhart, M. J. Am. Chem. Soc. 1996, 118, 11664. (d) Killian, C. M.;
Johnson, L. K.; Brookhart, M. Organometallics 1997, 16, 2005.
(6) Johnson, L. K.; Bennett, A. M. A.; Ittel, S. D.; Wang, L.; Parthasa-
rathy, A.; Hauptman, E.; Simpson, R. D.; Feldman, J.; Coughlin, E. B.
World Patent WO 98/30609, 1998.
(7) (a) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R.
H.; Bansleben, D. A.; Day, M. W. Organometallics 1998, 17, 3149. (b)
Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs,
R. H.; Bansleben, D. A. Science 2000, 287, 460.
(8) (a) Speiser, F.; Braunstein, P.; Saussine, L. Acc. Chem. Res. 2005,
38, 784. (b) Speiser, F.; Braunstein, P.; Saussine, L. Organometallics 2004,
23, 2625. (c) Speiser, F.; Braunstein, P.; Saussine, L.; Welter, R. Organo-
metallics 2004, 23, 2613. (d) Speiser, F.; Braunstein, P.; Saussine, L.; Welter,
R. Inorg. Chem. 2004, 43, 1649.
10.1021/om0701322 CCC: $37.00 © 2007 American Chemical Society
Publication on Web 05/05/2007