ChemComm
Communication
The synthesis of other natural products containing an unsymme-
trical trehalose core, such as trehalose monomycolate, trehalose
tetraester and SL-1, using this methodology is currently underway
in our laboratory.
This work was supported by the National Science Council of
Taiwan (NSC 101-2113-M-001-011-MY2) and Academia Sinica.
Notes and references
1 A. Varki and J. B Lowe, in Essentials of Glycobiology, ed. A. Varki,
D. R. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi,
G. W. Hart and M. E. Etzler, Cold Spring Harbor, New York, 2008,
2nd edn, p. 75.
2 (a) X. M. He and H.-W. Liu, Annu. Rev. Biochem., 2002, 71, 705;
(b) J. Thompson, S. Hess and A. Pikis, J. Biol. Chem., 2004, 279,
1553; (c) V. L. Y. Yip, A. Varrot, G. J. Davies, S. S. Rajan, X. Yang,
J. Thompson, W. F. Anderson and S. G. Withers, J. Am. Chem. Soc.,
2004, 126, 8354.
Scheme 1 Desymmetrization of trehalose.
3 M. Uchiyama, Y. Asoy, R. Noyori and Y. Hayakawa, J. Org. Chem.,
1993, 58, 373.
and 49% (recovered yield 86% and 96%) respectively. Hence,
lactose 60-phosphate (24) and the first chemical synthesis
of cellobiose 60-phosphate (27)19 can be carried out using this
two-step methodology easily in the overall yields of 86% and
95% respectively. Finally, the phosphorylation of sucrose (28)
occurred, and the sucrose O60-phosphate derivative 29 was
obtained in a yield of 48% as a single regio-isomer (recovered
yield 92%) and so the synthesis of sucrose 60-phosphate (30)
can be easily carried out in 2 steps.
To further broaden the usefulness of this methodology in
organic/carbohydrate chemistry, especially for the synthesis of
unsymmetrical trehalose-cored natural products, we sought
the possibility of transforming the C6 diphenylphosphate
group of trehalose back into a hydroxyl group after further
protection of other hydroxyl groups, not reported in the literature,
to produce the synthetically useful unsymmetrical trehalose
derivatives.
4 J. E. Marugg, L. W. McLaughlin, N. Piel, M. Tromp, G. A. van der Marel
and J. H. van Boom, Tetrahedron Lett., 1983, 24, 3989.
5 A. Burger and J. J. Anderson, J. Am. Chem. Soc., 1957, 79, 3575.
6 (a) C.-H. Wong and G. M. Whitesides, J. Am. Chem. Soc., 1981, 103, 4890;
(b) C.-H. Wong, J. Gordon, C. L. Cooney and G. M. Whitesides, J. Org.
Chem., 1981, 46, 4676.
7 (a) S. Park and R. J. Kazlauskas, J. Org. Chem., 2001, 66, 8395;
(b) F. Ganske and U. T. Bornscheuer, Org. Lett., 2005, 7, 3097;
´
´
´
(c) T. Rodrıguez-Perez, I. Lavandera, S. Fernandez, Y. S. Sanghvi,
M. Ferrero and V. Gotor, Eur. J. Org. Chem., 2007, 2769.
8 (a) K. Parang, E. J.-L. Fournier and O. Hindsgaul, Org. Lett., 2001,
3, 307; (b) Y. Ahmadibeni and K. Parang, J. Org. Chem., 2005, 70, 1100.
9 (a) M. A. Witschi and J. Gervay-Hague, Org. Lett., 2010, 12, 4312;
(b) H.-W. Hsieh, M. W. Schombs, M. A. Witschi and J. Gervay-Hague,
J. Org. Chem., 2013, 78, 9677.
10 (a) C.-C. Wang, J.-C. Lee, S.-Y. Luo, S. S. Kulkarni, Y.-W. Huang,
C.-C. Lee, K.-L. Chang and S.-C. Hung, Nature, 2007, 446, 896;
(b) C.-C. Wang, S.-S. Kulkarni, J.-C. Lee, S.-Y. Luo and S.-C. Hung,
Nat. Protoc., 2008, 3, 97.
11 A. A. Joseph, V. P. Verma, X.-Y. Liu, C.-H. Wu, V. M. Dhurandhare
and C.-C. Wang, Eur. J. Org. Chem., 2012, 744.
As depicted in Scheme 1, after treating the mono-phosphorylated 12 M. K. Patel and B. G. Davis, Org. Lett., 2013, 15, 346.
trehalose derivative 20 with benzaldehyde, TMSOTf10 and then
13 (a) T. Eguchi, S. Sasaki, Z. Huang and K. Kakinuma, J. Org. Chem.,
2002, 67, 3979; (b) N. Yamauchi and K. Kakinuma, J. Org. Chem.,
1995, 60, 5614.
acidic resin to afford a 6-O-diphenylphosphate-40,60-O-benzylidene
trehalose compound 31 in 90%, the diphenylphosphate was 14 D. Champmartin, P. Rubini, A. Lakatos and T. Kiss, J. Inorg.
Biochem., 2001, 84, 13.
15 F. Foufelle, B. Gouhot, J. P. Pegorier, D. Perdereau, J. Girard and
cleaved by using sodium nitrite under a microwave-assisted
condition for 30 minutes to produce 4,6-O-benzylidene trehalose
P. Ferre, J. Biol. Chem., 1992, 267, 20543.
(32) in 96%, which is of low yield via the direct random benzyl- 16 (a) R. Hedrich, S. Machill and E. Brunner, Carbohydr. Res., 2013,
365, 52; (b) P. Tiels, E. Baranova, K. Piens, C. De Visscher, G. Pynaert,
idenation of trehalose. Further per-O-benzylation of 32 gave
¨
W. Nerinckx, J. Stout, F. Fudalej, P. Hulpiau, S. Tannler, S. Geysen,
unsymmetrical 33 in 91%. Moreover, cleaving the TMS groups of
20 followed by the per-O-benzylation using 2,4,6-tris(benzyloxy)-
1,3,5-triazine (TriBOT) under an acidic condition20 afforded the
fully protected 34 in 71% yield. Microwave-assisted sodium
nitrite cleavage of the C6 phosphate gave a synthetically useful
hepta-benzyl-trehalose 3518a,21 in 75%.
A. Van Hecke, A. Valevska, W. Vervecken, H. Remaut and N. Callewaert,
Nat. Biotech., 2012, 30, 1225; (c) M. Meldal, M. K. Christensen and
K. Bock, Carbohydr. Res., 1992, 235, 115.
17 (a) M. K. Patel and B. G. Davis, Org. Biomol. Chem., 2010, 8, 4232;
(b) V. A. Sarpe and S. S. Kulkarni, J. Org. Chem., 2011, 76, 6866;
¨
(c) U. Passler, M. Gruner, S. Penkov, T. V. Kurzchalia and
¨
H.-J. Knolker, Synlett, 2011, 6866; (d) N. K. Paul, J. K. Twibanire
´
and T. B. Grindly, J. Org. Chem., 2013, 78, 363; (e) A. Lemetais,
In summary, we have successfully developed a simple and
efficient methodology that allows the regioselective phosphoryl-
ation of primary hydroxyl groups of monosaccharides and for
disaccharides selectively on the non-reducing end. Therefore
their corresponding carbohydrate 6-phosphate can now be
prepared highly efficiently in merely 2 steps in excellent overall
yields. Most importantly, only one of the two primary hydroxyl
groups of trehalose can be phosphorylated. This not only allows
us to prepare trehalose 6-phosphate (21) efficiently but also to
desymmetrize trehalose by further cleaving the phosphate
group using sodium nitrite (the first example in the literature).
Y. Bourdreux, P. Lesot, J. Farjon and J.-M. Beau, J. Org. Chem., 2013,
78, 7648; ( f ) M. Giordano, A. Iadonisi and A. Pastore, Eur. J. Org.
Chem., 2013, 3137.
18 (a) K. M. Backus, H. I. Boshoff, C. S. Barry, O. Bouturwira,
M. K. Patel, F. D’Hooge, S. S. Lee, L. E. Via, K. Tahlan, C. E. Barry
III and B. G. Davis, Nat. Chem. Biol., 2011, 7, 228; (b) O. Fernandez,
L. Bethencourt, A. Quero, R. S. Sangwan and C. Clement, Trends
Plant Sci., 2010, 15, 409; (c) I. Perez-Victoria, S. Kemper, M. K. Patel,
J. M. Edwards, J. C. Errey, L. F. Primavesi, M. J. Paul, T. D. W.
Claridge and B. G. Davis, Chem. Commun., 2009, 5862.
19 V. L. Y. Yip and S. G. Withers, Angew. Chem., Int. Ed., 2006, 45, 6179.
20 K. Yamada, H. Fujita and M. Kunishima, Org. Lett., 2012, 14, 5026.
21 C. S. Barry, K. M. Backus, C. E. Barry III and B. G. Davis, J. Am. Chem.
Soc., 2011, 133, 13232.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 11497--11499 11499