In summary, we have demonstrated a large anisotropy of
polarization in a 1D copper(II)-based coordination polymer
which crystallizes in the non-centrosymmetric polar space
group Pna21. Ferroelectric coercivity was present only along
the polar c axis of the crystals. Theoretical investigation
reveals that the polar anisotropy and ferroelectricity are
closely related to the coordination geometry of the metal ion
and the packing mode of the coordination polymer. Thus, the
present work would be useful for our rational design of
ferroelectric coordination polymers.
S. Duchame, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin
and A. Zlatkin, Nature, 1998, 391, 874.
2 S. Horiuchi and Y. Tokura, Nat. Mater., 2008, 7, 357; T. Furukawa,
Phase Transitions, 1989, 18, 143; K. M. Ok, E. O. Chi and
P. S. Halasyamani, Chem. Soc. Rev., 2006, 35, 710;
G. H. Haertling, J. Am. Ceram. Soc., 1999, 82, 797.
3 O. TaKashi, K. Ryo, M. Tadaoki and S. Tatsuya, J. Am. Chem.
Soc., 2005, 127, 17598; Y.-H. Li, Z.-R. Qu, H. Zhao, Q. Ye,
L.-X. Xing, X.-S. Wang, R.-G. Xiong and X.-Z. You, Inorg. Chem.,
2004, 43, 3768; Q. Ye, Y.-M. Song, G.-X. Wang, R.-G. Xiong,
P. W. Hong Chan and S. D. Huang, Cryst. Growth Des., 2007, 7,
1568.
4 Q. Ye, Y.-M. Song, G.-X. Wang, K. Chen, D.-W. Fu, P. W. Hong
Chan, J.-S. Zhu, S. D. Huang and R.-G. Xiong, J. Am. Chem. Soc.,
2006, 128, 6554; H. Y. Ye, D. W. Fu, Y. Zhang, W. Zhang,
R. G. Xiong and S. P. Huang, J. Am. Chem. Soc., 2009, 131, 42.
5 S. G. Baca, M. T. Reetz, R. Goddard, I. G. Filippova,
Y. A. Simonov, M. Gdaniec and N. Gerbeleu, Polyhedron, 2006,
25, 1215; Y. A. Simonov, M. Gdanets, I. G. Filippova, S. G. Baka,
G. A. Timko and N. V. Gerbeleu, Koord. Khim. (Coord. Chem.),
2001, 27, 380; S. G. Baca, I. G. Filippova, O. A. Gherco,
M. Gdaniec, Y. A. Simonov, N. V. Gerbeleu, P. Franz, R. Basler
and S. Decurtins, Inorg. Chim. Acta, 2004, 357, 3419.
This work was supported by the NNSFC (Grant Nos.
20825103 and 20721001), the 973 Project from MSTC (Grant
2007CB815304), the Natural Science Foundation of Fujian
Province of China (Grant No. 2008J0010), and the Natural
Science and Engineering Research Council of Canada
(NSERC).
Notes and references
6 S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana,
N. Na-gaosa and Y. Tokura, Nat. Mater., 2005, 4, 163.
7 R. G. Parr and W. Yang, in Density Functional Theory of Atoms and
Molecules, Oxford University Press, Oxford, 1989.
z Preparation of 1: o-Phthalic acid (0.166 g, 1.0 mmol), imidazole
(0.140 g, 2.0 mmol) and cupric acetate (0.200 g, 1.0 mmol) were added
into the mixture of 4 mL distilled water and 12 mL ethanol, while
stirring at room temperature. When the pH value of the mixture was
adjusted to about 6.2 with ammonia solution (B12%, v/v), the cloudy
solution was put into a 25 mL Teflon-lined Parr and heated to 100 1C
8 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox,
H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision D.01), Gaussian, Inc., Wallingford, CT, 2004.
for 1000 min, and then cooled to room temperature at a rate of 2 1C hꢁ1
.
Dark-blue block crystals of 1 were obtained in 65% yield (based on
cupric acetate). IR (KBr): 3154(s), 3076(m), 2871(m), 2851(m),
1472(w), 2964(w), 1602(s), 1091(s), 1457(s), 1546(s), 1485(m),
1447(m), 1076(s), 963(w), 864(w), 831(m), 768(m), 745(m), 713(w),
704(w), 655(m), 625(w), 466(w) cmꢁ1; Anal. Calc. for 1: C 46.22, H
3.32, N 15.40. Found: C 45.20, H 3.14, N 14.81%.
y Crystal data for 1 (Cu(C8H4O4)(C3H4N2)2): orthorhombic, space group
Pna21, Flack parameter = 0.051(2), T = 298(2) K, a = 16.578(3),
b = 15.421(3), c = 11.988(2) A, V = 3064.9(10) A3, Z = 4, Dc
=
1.577 g cmꢁ3, M = 727.63, m(Mo-Ka) = 1.450 mmꢁ1, number of
reflections measured/number of independent reflections = 23055/5997,
Rint = 0.0514, R1(obs.) = 0.0454, wR2 (all data) = 0.1113.
1 M. E. Lines and A. M. Glass, in Principles and Applications of
Ferroelectrics and Related Materials, Oxford Univ. Press,
New York, 1977; H. N. Lee, D. Hesse, N. Zakharov and
U. Gosele, Science, 2002, 296, 2006; A. V. Bune, V. M. Fridkin,
9 M. Tokunaga, J. Phys. Soc. Jpn., 1988, 57, 4275.
ꢂc
This journal is The Royal Society of Chemistry 2009
1646 | Chem. Commun., 2009, 1644–1646