10.1002/anie.202010437
Angewandte Chemie International Edition
RESEARCH ARTICLE
D. Volodin, A. F. Smol’yakov, A. A. Korlyukov, A. M. Muzafarov, Green
Chem. 2018, 20, 1467; f) K. Wang, J. Zhou, Y. Jiang, M. Zhang, C.
Wang, D. Xue, W. Tang, H. Sun, J. Xiao, C. Li, Angew. Chem. Int. Ed.
2019, 58, 6380; Angew. Chem. 2019, 131, 6446.
readily available and inexpensive NHPI as a HAT mediator and
allows Si-H oxidation to proceed with excellent chemoselectivity
under mild and neutral reaction conditions. Furthermore, this
hydrolysis process is compatible with a wide range of functional
groups and complex molecules. Reactive silyl cations are
proposed as key intermediates that are generated through a
NHPI-mediated electrochemical oxidation process. Further
studies on the scope and synthetic application of this
methodology are currently underway in our laboratory.
[9]
For selected examples, see: a) G. H. Barnes, N. E. Daughenbaugh, J.
Org. Chem. 1966, 31, 885; b) U. Schubert, C. Lorenz, Inorg. Chem.
1997, 36, 1258; c) M. Lee, S. Ko, S. Chang, J. Am. Chem. Soc. 2000,
122, 12011; d) Y. Lee, D. Seomoon, S. Kim, H. Han, S. Chang, P. H.
Lee, J. Org. Chem. 2004, 69, 1741; e) E. A. Ison, R. A. Corbin, M. M.
Abu-Omar, J. Am. Chem. Soc. 2005, 127, 11938; f) T. Mitsudome, S.
Arita, H. Mori, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int.
Ed. 2008, 47, 7938; Angew. Chem. 2008, 120, 8056; g) B. P. S.
Chauhan, A. Sarkar, M. Chauhan, A. Roka, Appl. Organomet. Chem.
2009, 23, 385; h) N. Asao, Y. Ishikawa, N. Hatakeyama,
Menggenbateer, Y. Yamamoto, M. Chen, W. Zhang, A. Inoue, Angew.
Chem. Int. Ed. 2010, 49, 10093; Angew. Chem. 2010, 122, 10291; i) J.
John, E. Gravel, A. Hagege, H. Li, T. Gacoin, E. Doris, Angew. Chem.
Int. Ed. 2011, 50, 7533; Angew. Chem. 2011, 123, 7675; j) Y. Kikukawa,
Y. Kuroda, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51,
2434; Angew. Chem. 2012, 124, 2484; k) M. Yu, H. Jing, X. Liu, X. Fu,
Organometallics 2015, 34, 5754.
Acknowledgements
This work is financially supported by the National Natural
Science Foundation of China (22071268, 21702230), the
Program for Jiangsu Province Innovative Research Team, and
"Double First-Class" Project of China Pharmaceutical University
(CPU2018GY35, CPU2018GF05).
[10] a) D. Limnios, C. G. Kokotos, ACS Catal. 2013, 3, 2239; b) A. T. Kelly,
A. K. Franz, ACS Omega 2019, 4, 6295.
Keywords: oxidation • electrochemistry • silanes • silanols •
[11] S. Bähr, S. Brinkmann-Chen, M. Garcia-Borràs, J. M. Roberts, D. E.
Katsoulis, K. N. Houk, F. H. Arnold, Angew. Chem. Int. Ed. 2020, 59,
15507.
synthetic methods
[1]
a) P. D. Lickiss, Adv. Inorg. Chem. 1995, 42, 147; b) R. Murugavel, M.
G. Walawalkar, M. Dan, H. W. Roesky, C. N. R. Rao, Acc. Chem. Res.
2004, 37, 763; c) V. Chandrasekhar, R. Boomishankar, S. Nagendran,
Chem. Rev. 2004, 104, 5847; d) Q. Zhou, S. Yan, C. C. Han, P. Xie, R.
Zhang, Adv. Mater. 2008, 20, 2970; e) M. Jeon, J. Han, J. Park, ACS
Catal. 2012, 2, 1539.
[12]
For selected reviews, see: a) R. Francke, R. D. Little, Chem. Soc. Rev.
2014, 43, 2492; b) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev.
2017, 117, 13230; c) S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27; d) J.-i.
Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 2018, 118, 4702; e) J. E.
Nutting, M. Rafiee, S. S. Stahl, Chem. Rev. 2018, 118, 4834; f) Y. Jiang,
K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485; g) K. D. Moeller, Chem.
Rev. 2018, 118, 4817; h) G. S. Sauer, S. Lin, ACS Catal. 2018, 8, 5175;
i) H. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem. Rev. 2019, 119,
6769; j) P. Xiong, H.-C. Xu, Acc. Chem. Res. 2019, 52, 3339; k) C.
Kingston, M. D. Palkowitz, Y. Takahira, J. C. Vantourout, B. K. Peters,
Y. Kawamata, P. S. Baran, Acc. Chem. Res. 2020, 53, 72; l) L.
Ackermann, Acc. Chem. Res. 2020, 53, 84; m) J. L. Röckl, D. Pollok, R.
Franke, S. R. Waldvogel, Acc. Chem. Res. 2020, 53, 45; n) K.-J. Jiao,
Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Acc. Chem. Res. 2020, 53,
300.
[2]
[3]
a) S. E. Denmark, C. S. Regens, Acc. Chem. Res. 2008, 41, 1486; b) S.
E. Denmark, A. Ambrosi, Org. Process Res. Dev. 2015, 19, 982.
a) C. Huang, B. Chattopadhyay, V. Gevorgyan, J. Am. Chem. Soc.
2011, 133, 12406; b) M. Mewald, J. A. Schiffner, M. Oestreich, Angew.
Chem. Int. Ed. 2012, 51, 1763; Angew. Chem. 2012, 124, 1797; c) M.
Parasram, V. Gevorgyan, Acc. Chem. Res. 2017, 50, 2038.
[4]
a) T. Min, J. C. Fettinger, A. K. Franz, ACS Catal. 2012, 2, 1661; b) N.
T. Tran, S. O. Wilson, A. K. Franz, Org. Lett. 2012, 14, 186; c) A. G.
Schafer, J. M. Wieting, T. J. Fisher, A. E. Mattson, Angew. Chem. Int.
Ed. 2013, 52, 11321; Angew. Chem. 2013, 125, 11531; d) K. M.
Diemoz, J. E. Hein, S. O. Wilson, J. C. Fettinger, A. K. Franz, J. Org.
Chem. 2017, 82, 6738.
[13] For selected examples, see: a) E. J. Horn, B. R. Rosen, Y. Chen, J.
Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77; b) R.
Hayashi, A. Shimizu, J.-i, Yoshida, J. Am. Chem. Soc. 2016, 138, 8400;
c) Y. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr, P. S.
Baran, J. Am. Chem. Soc. 2017, 139, 7448; d) M. Rafiee, F. Wang, D.
P. Hruszkewycz, S. S. Stahl, J. Am. Chem. Soc. 2018, 140, 22; e) A. J.
J. Lennox, S. L. Goes, M. P. Webster, H. F. Koolman, S. W. Djuric, S. S.
Stahl, J. Am. Chem. Soc. 2018, 140, 11227; f) Y. Imada, J. L. Röckl, A.
Wiebe, T. Gieshoff, D. Schollmeyer, K. Chiba, R. Franke, S. R.
Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 12136; Angew. Chem.
2018, 130, 12312; g) Q. Zhang, X. Chang, L. Peng, C. Guo, Angew.
Chem. Int. Ed. 2019, 58, 6999; Angew. Chem. 2019, 131, 7073; h) P.
Xiong, H.-B. Zhao, X.-T. Fan, L.-H. Jie, H. Long, P. Xu, Z.-J. Liu, Z.-J.
Wu, J. Cheng, H.-C. Xu, Nat. Commun. 2020, 11, 2706.
[5]
a) A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388; b) G. K.
Min, D. Hernández, T. Skrydstrup, Acc. Chem. Res. 2013, 46, 457; c) R.
Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779.
[6]
[7]
J. A. Cella, J. C. Carpenter, J. Organomet. Chem. 1994, 480, 23.
For selected examples, see: a) N. Duffaut, R. Calas, J.-C. Macé, Bull.
Chem. Soc. Fr. 1959, 1971; b) L. Spialter, L. Pazdernik, S. Bernstein,
W. A. Swansiger, G. R. Buell, M. E. Freeburger, J. Am. Chem. Soc.
1971, 93, 5682; c) L. H. Sommer, L. A. Ulland, G. A. Parker, J. Am.
Chem. Soc. 1972, 94, 3469; d) W. Adam, R. Mello, R. Curci, Angew.
Chem. Int. Ed. Engl. 1990, 29, 890; Angew. Chem. 1990, 102, 916; e)
M. Cavicchioli, V. Montanari, G. Resnati, Tetrahedron Lett. 1994, 35,
6329; f) P. D. Lickiss, R. Lucas, J. Organomet. Chem. 1995, 521, 229;
g) K. Valliant-Saunders, E. Gunn, G. R. Shelton, D. A. Hrovat, W. T.
Borden, J. M. Mayer, Inorg. Chem. 2007, 46, 5212.
[14] Electrochemical measurements of several silanes were performed on
an ElectraSyn 2.0 instrument. See SI for details.
[15] K. Atsutaka, K. Toshihiro, T. Eiji, S. Tomohiro, I. Mitsuo, Chem. Lett.
1993, 22, 1945.
[8]
For selected examples, see: a) W. Adam, C. M. Mitchell, C. R. Saha-
Möller, O. Weichold, H. Garcia, Chem. Commun. 1998, 2609; b) W.
Adam, C. M. Mitchell, C. R. Saha-Moller, O. Weichold, J. Am. Chem.
Soc. 1999, 121, 2097; c) R. Ishimoto, K. Kamata, N. Mizuno, Angew.
Chem. Int. Ed. 2009, 48, 8900; Angew. Chem. 2009, 121, 9062; d) Y.
Okada, M. Oba, A. Arai, K. Tanaka, K. Nishiyama, W. Ando, Inorg.
Chem. 2010, 49, 383; e) A. V. Arzumanyan, I. K. Goncharova, R. A.
Novikov, S. A. Milenin, K. L. Boldyrev, P. N. Solyev, Y. V. Tkachev, A.
[16] a) C. Ueda, M. Noyama, H. Ohmori, M. Masui, Chem. Pharm. Bull.
1987, 35, 1372; b) S. Kishioka, A. Yamada, J. Electroanal. Chem. 2005,
578, 71.
[17] For some examples on transition-metal-catalyzed dehydrogenative
coupling of hydrosilanes with hydroxyl compounds, see: a) B. T. Gregg,
A. R. Cutler, Organometallics 1994, 13, 1039; b) L. D. Field, B. A.
Messerle, M. Rehr, L. P. Soler, T. W. Hambley, Organometallics 2003,
This article is protected by copyright. All rights reserved.