Please do not adjust margins
Organic & Biomolecular Chemistry
Page 3 of 4
DOI: 10.1039/C6OB00942E
Journal Name
COMMUNICATION
Based on the experiments and literature precedents,9
a
pharmaceuticals, this method provides a direct approach
toward the achievement of these heterocycles from readily
available starting materials under mild reaction conditions.
Next, the synthetic utility of this protocol was further
demonstrated by concise synthesis of Moxaverine, a drug used
to treat functional gastrointestinal disorders (Fig. 3). 8 Initially,
the simple phenylacetic acid was converted to phenylacetyl
chloride, which underwent a Friedel-Crafts reaction with 1,2-
plausible mechanism is proposed in Fig. 4. The initial [Cp*RhIII]
was generated from [Cp*RhCl2]2 and Ag2CO3, and reacted with
oxime
intermediate
complex . The sequential regioselective insertion of alkene
from led to intermediate , and a redox-neutral cyclization
furnished and Rh(I). The reduction of by Rh(I) regenerates
[Cp*RhIII] catalyst to enable the catalytic cycle and also delivers
dihydroisoquinoline species . Finally, the oxidation of by
, thus
1
with a C−H activation/cyclorhodation step to afford
A
, which is coordinated with alkenes to form
2
B
B
C
D
D
dimethoxybenzene to afford
and subject to the standard reaction condition with methyl
vinyl ketone to deliver isoquinoline . The next transformation
6. 6 was then converted to oxime
E
E
7
Ag2CO3 delivered the aromatic isoquinoline products
the amount of Ag2CO3 should be equivalent.
3
8
of ketone to tosyl hydrazone and a following DIBAL-reduction
finally furnished Moxaverine in 65% yield.
To gain insight to the reaction mechanism, kinetic isotope
In summary, a Rh(III)-catalyzed C−H activation/cyclization of
oximes and alkenes has been developed for regioselective
effect (KIE) study was conducted (Fig. 4), and a large primary synthesis of isoquinolines. The protocol is featured with broad
KIE value (2.8) was obtained, suggesting that C−H bond
cleavage occurs during the rate-determing step.
substrate scope and mild reaction conditions, and also applied
to concise synthesis of Moxaverine. Furthermore, kinetic effect
study was conducted and
proposed.
a plausible mechanism was
This work was financially supported by National Natural Science
Foundation of China (grant no 21472163).
Notes and references
1
(a) K. W. Bentley, The Isoquinoline Alkaloids; Hardwood
Academic: Amsterdam, The Netherlands, 1998; Vol. 1; (b) K.
W. Bentley, Nat. Prod. Rep., 2004, 21, 395. (c) K. W. Bentley,
Nat. Prod. Rep., 2006, 23, 444. (d) M. Croisy-Delcey, A.
Croisy, D. Carrez, C. Huel, A. Chiaroni, P. Ducrot, E. Bisagni, L.
Fig. 3 Concise synthesis of Moxaverine.
Jin, G. Leclercq, Bioorg. Med. Chem., 2000, 8, 2629.
(a) A. Bischler, B. Napieralski, Chm. Ber., 1893, 26, 1903; (b) A.
Pictet, T. Spengler, Chem. Ber., 1911, 44, 2030.
2
3
(a) N. Guimond, K. Fagnou, J. Am. Chem. Soc., 2009, 131
,
12050; (b) K. Parthasarathy, C.-H. Cheng, J. Org. Chem., 2009,
74, 9359; (c) X. Zhang, D. Chen, M. Zhao, J. Zhao, A. Jia, X. Li,
Adv. Syn. Catal., 2011, 353, 719; (d) Y.-F. Wang, K. K. Toh, J.-Y.
Lee, S. Chiba, Angew. Chem., Int. Ed., 2011, 50, 5927; (e) R. K.
Chinnagolla, S. Pimparkar, M. Jeganmohan, Org. Lett., 2012,
14, 3032; (f) C. Kornhaaß, J. Li, L. Ackermann, J. Org. Chem.,
Fig. 4 KIE study.
2012, 77, 9190; (g) M. Sen, D. Kalsi, B. Sundararaju, Chem.
Eur. J., 2015, 21, 15529; (h) B. T. Yoshino, M. Kanai, S.
Matsunaga, Angew. Chem., Int. Ed., 2015, 54, 12968; (i) Z.
Zhu, X. Tang, X. Li, W. Wu, G. Deng, H. Jiang, J. Org. Chem.,
2016, 81, 1401.
4
5
(a) D. Zhao, F. Lied, F. Glorius, Chem. Sci. 2014, 5, 2869; (b) H.
Chu, S. Sun, J.-T. Yu, J. Cheng, Chem. Comm. 2015, 51, 13327.
(a) J. M. Neely, T. Rovis, J. Am. Chem. Soc., 2013, 135, 66; (b)
J. M. Neely, T. Rovis, J. Am. Chem. Soc., 2014, 136, 2735; (c) F.
Romanov-Michailidis, K. F. Sedillo, J. M. Neely, T. Rovis, J. Am.
Chem. Soc., 2015, 137, 8892; (d) T. K. Hyster, T. Rovis, Chem.
Comm., 2011, 47, 11846.
6
(a) S. Cui, Y. Zhang, Q. Wu, Chem. Sci., 2013,
Y. Zhang, D. Wang, Q. Wu, Chem. Sci., 2013,
Zhang, Q. Wu, S. Cui, Chem. Sci., 2014, , 297; (d) J. Zheng, Y.
4
, 3421; (b) S. Cui,
4, 3912; (c) Y.
5
Zhang, S. Cui, Org. Lett., 2014, 16, 3560; (e) Y. Zhang, Q. Wu, S.
Cui, Org. Lett., 2015, 17, 2494; (f) Y. Zhang, J. Zheng, S. Cui, J.
Org. Chem., 2014, 79, 6490; (g) Y. Zhang, M. Shen, S. Cui, T. Hou,
Bioorg. Chem. Med. Lett., 2014, 24, 5470.
7
8
P. Duan, X. Lan, Y. Chen, S.-S. Qian, J. J. Li, L. Lu, Y. Lu, B.
Chen, M. Hong, J. Zhao, Chem. Comm., 2014, 50, 12135.
(a) R. Bayer, S. Plewa, E. Borcescu, W. Claus, Arzneimittel-
Forschung 1988, 38, 1765; (b) H. Resch, G. Weigert, K. Karl, B.
Pemp, G. Garhofer, L. Schmetterer, Acta Ophthalmol. 2009,
87, 731-735.
Fig. 5 Proposed reaction mechanism.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins