Organic Letters
Letter
475. (f) Soderman, S. C.; Schwan, A. L. J. Org. Chem. 2012, 77,
10978−10984.
6562−6562. (b) Kornblum, N.; Jones, W. J.; Anderson, G. J. J. Am.
Chem. Soc. 1959, 81, 4113−4114.
̈
(2) (a) Mack, D. J.; Weinrich, M. L.; Vitaku, E.; Njardarson, J. T. Top
200 Pharmaceutical Products by US Retail Sales in 2010. http://cbc.
0.pdf (accessed Dec 21, 2012). (b) McGrath, N. A.; Brichacek, M.;
Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348−1349.
(12) DMF and DMAc are also competent solvents in the alkylation
of zinc sulfinates (see Table 4) and may be used when necessary to
prevent Kornblum oxidation of the alkyl halide. In some cases, slightly
lower yields were observed in comparison to reactions in DMSO.
(13) Studies to elucidate the proton source were not conducted.
(14) (a) Corley, E. G.; Conrad, K.; Murry, J. A.; Savarin, C.; Holko,
J.; Boice, G. J. Org. Chem. 2004, 69, 5120−5123. (b) Krasovskiy, A.;
Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006,
45, 6040−6044. (c) Ross, A. J.; Lang, H. L.; Jackson, R. F. W. J. Org.
Chem. 2010, 75, 245−248. (d) Allen, J. R.; Chen, J. J.; Frohn, M. J.;
Hu, E.; Liu, Q.; Pickrell, A. J.; Rumfelt, S.; Rzasa, R. M.; Zhong, W.
Nitrogen Heterocyclic Compounds Useful as PDE10 Inhibitors. PCT
Int. Appl. WO 2011/143365, 17 Nov 2011.
(3) Recent examples include: (a) Southers, J. A.; Bauman, J. N.;
Price, D. A.; Humphries, P. S.; Balan, G.; Sagal, J. F.; Maurer, T. S.;
Zhang, Y.; Oliver, R.; Herr, M.; Healy, D. R.; Li, M.; Kapinos, B.; Fate,
G. D.; Riccardi, K. A.; Paralkar, V. M.; Brown, T. A.; Kalgutkar, A. S.
ACS Med. Chem. Lett. 2010, 1 (5), 219−223. (b) Montgomery, J. I.;
Brown, M. F.; Reilly, U.; Price, L. M.; Abramite, J. A.; Arcari, J.;
Barham, R.; Che, Y.; Chen, J. M.; Chung, S. W.; Collantes, E. M.;
Desbonnet, C.; Doroski, M.; Doty, J.; Engtrakul, J. J.; Harris, T. M.;
Huband, M.; Knafels, J. D.; Leach, K. L.; Liu, S.; Marfat, A.; McAllister,
L.; McElroy, E.; Menard, C. A.; Mitton-Fry, M.; Mullins, L.; Noe, M.
C.; O’Donnell, J.; Oliver, R.; Penzien, J.; Plummer, M.;
Shanmugasundaram, V.; Thoma, C.; Tomaras, A. P.; Uccello, D. P.;
Vaz, A.; Wishka, D. G. J. Med. Chem. 2012, 55, 1662−1670.
(c) Semple, G.; Santora, V. J.; Smith, J. M.; Covel, J. A.; Hayashi,
R.; Gallardo, C.; Ibarra, J. B.; Schultz, J. A.; Park, D. M.; Estrada, S. A.;
Hofilena, B. J.; Smith, B. M.; Ren, A.; Suarez, M.; Frazer, J.; Edwards, J.
E.; Hart, R.; Hauser, E. K.; Lorea, J.; Grottick, A. J. Bioorg. Med. Chem.
Lett. 2012, 22, 71−75. (d) Liu, K. K.-C.; Bailey, S.; Dinh, D. M.; Lam,
H.; Li, C.; Wells, P. A.; Yin, M.-J.; Zou, A. Bioorg. Med. Chem. Lett.
2012, 22, 5114−5117. (e) Rueeger, H.; Lueoend, R.; Rogel, O.;
(15) (a) Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43,
3333−3336. (b) Thurber, T. C.; Prince, A.; Halpern, O. J. Heterocycl.
Chem. 1982, 19, 961−965.
(16) Krasovskiy, A.; Knochel, P. Synthesis 2006, 890−891.
Rondeau, J.-M.; Mobitz, H.; Machauer, R.; Jacobson, L.; Staufenbiel,
̈
M.; Desrayaud, S.; Neumann, U. J. Med. Chem. 2012, 55, 3364−3386.
(4) (a) Pinnick, H. W.; Reynolds, M. A. J. Org. Chem. 1979, 44, 160−
161. (b) Xu, C. D.; Jiang, J. Q.; Huang, X. Chin. Chem. Lett. 1993, 4,
1051−1052. (c) Baskin, J. M.; Wang, Z. Tetrahedron Lett. 2002, 43,
8479−8483. (d) Baskin, J. M.; Wang, Z. Org. Lett. 2002, 4, 4423−
4425. (e) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini,
R. J. Org. Chem. 2004, 69, 5608−5614. (f) Pandya, R.; Murashima, T.;
Tedeschi, L.; Barrett, A. G. M. J. Org. Chem. 2003, 68, 8274−8276.
(g) Wu, J.-P.; Emeigh, J.; Su, X.-P. Org. Lett. 2005, 7, 1223−1225.
(h) Martin, C.; Sandrinelli, F.; Perrio, C.; Perrio, S.; Lasne, M.-C. J.
Org. Chem. 2006, 71, 210−214. (i) Chumachenko, N.; Sampson, P.
Tetrahedron 2006, 62, 4540−4548.
(5) (a) Truce, W. E.; Murphy, A. M. Chem. Rev. 1951, 48, 69−124.
(b) Marvel, C. S.; Johnson, R. S. J. Org. Chem. 1948, 13, 822−829.
(c) Burton, H.; Davy, W. A. J. Chem. Soc. 1948, 528−529.
(6) (a) Kice, J. L.; Bowers, K. W. J. Am. Chem. Soc. 1962, 84, 605−
610. (b) Kice, J. L.; Pawlowski, N. E. J. Org. Chem. 1963, 28, 1162.
(c) Kice, J. L.; Giancarlo, G.; Venier, C. G. J. Org. Chem. 1966, 31,
3561−3567.
(7) (a) Nguyen, B.; Emmett, E. J.; Willis, M. C. J. Am. Chem. Soc.
2010, 132, 16372−16373. (b) Woolven, H.; Gonzales-Rodriguez, C.;
Marco, I.; Thompson, A. L.; Willis, M. C. Org. Lett. 2011, 13, 4876−
4878. (c) Emmett, E. J.; Richards-Taylor, C. S.; Nguyen, B.; Garcia-
Rubia, A.; Hayter, B. R.; Willis, M. C. Org. Biomol. Chem. 2012, 10,
4007−4014. (d) Ye, S.; Wu, J. Chem. Commun. 2012, 48, 7753−7755.
(e) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem., Int. Ed.
2013, 52, 12679−12683. (f) Richards-Taylor, C. S.; Blakemore, D. C.;
Willis, M. C. Chem. Sci. 2013, DOI: 10.1039/c3sc52332b. (g) For a
related study, see: Willis, M. C.; Hennessy, A. J.; Russell, C. J.;
Deeming, A. S. Org. Lett. 2014, DOI: 10.1021/ol403122a.
(8) Limited examples of zinc sulfinate alkylation are known. See refs
4c and 4i.
(9) The actual structure of the organozinc intermediate might differ
from our representation; e.g., see: O’Hara, F.; Baxter, R. D.; O’Brien,
A. G.; Collins, M. R.; Dixon, J. A.; Fujiwara, Y.; Ishihara, Y.; Baran, P.
S. Nat. Protoc. 2013, 8, 1042−1047.
(10) Meek, J. S.; Fowler, J. S. J. Org. Chem. 1968, 33, 3422−3424.
(11) (a) Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.;
Larson, H. O.; Levand, O.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79,
157
dx.doi.org/10.1021/ol4031233 | Org. Lett. 2014, 16, 154−157