Pyridazines and Pyrimidines as MAO Inhibitors
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 20 3819
(11) (a) Kneubu¨hler, S.; Carta, V.; Altomare, C.; Carotti, A.; Testa,
B. Synthesis and monoamine oxidase inhibitory activity of
3-substituted 5H-indeno[1,2-c]pyridazines. Helv. Chim. Acta
1993, 76, 1954-1963. (b) Kneubu¨hler, S.; Thull, U.; Altomare,
C.; Carta, V.; Gaillard, P.; Carrupt, P.-A.; Carotti, A.; Testa, B.
Inhibition of monoamine oxidase-B by 5H-indeno[1,2-c]py-
ridazines: Biological activities, quantitative structure-activity
relationships (QSARs) and 3D-QSARs. J . Med. Chem. 1995, 38,
3874-3883.
(12) Gaillard, P.; Carrupt, P.-A.; Testa, B.; Boudon, A. Molecular
lipophilicity potential, a tool in 3D QSAR: Method and applica-
tions. J . Comput.-Aided Mol. Des. 1994, 8, 83-96.
(13) Heinish, G.; J entzsch, A.; Pailer, M. C-4 Substituted pyridazines
by homolitic alkylation and acylation. Monatsh. Chem. 1974,
105, 648-652.
(14) Stetter, H.; Siehnhold, E. Zur kenntnis des kondensation-
sproduktes aus dihydroresorcin und phenacylbromid. Chem. Ber.
1955, 88, 271-274.
(15) (a) Carotti, A.; Carta, V.; Campagna, F.; Altomare, C.; Casini,
G.; An efficient route to biologically active 5H-indeno[1,2-c]-
pyridazin-5-ones. Farmaco 1993, 48, 137-141. (b) Altomare, C.;
Campagna, F.; Carta, V.; Cellamare, S.; Carotti, A.; Genchi, G.;
De Sarro, G. Farmaco 1994, 49, 313-323.
(16) (a) Hansch, C.; Leo, A. The FRAGMENT method of calculating
partition coefficients. In Substituent constants for correlation
analysis in chemistry and biology. Wiley: New York, 1979; pp
18-43. (b) Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR.
Hydrophobic, Electronic, and Steric Constants, ACS Professional
Reference Book; American Chemical Society: Washington, DC,
1995. (c) Van de Waterbeemb, H.; Testa, B. The parametrization
of lipophilicity and other structural properties in drug design.
In Advances in Drug Research; Testa, B., Ed.; Academic Press:
London, U.K., 1987; Vol. 16, pp 85-225.
Regr ession An a lysis. Multiple linear regression (MLR)
analysis was performed using the commercially available
statistical package PARVUS 1.237 running on an IBM-compat-
ible PC.
Ack n ow led gm en t. The Italian authors gratefully
acknowledge support from MURST and CNR (Rome,
Italy). B.T. and P.A.C. are indebted to the Swiss
National Science Foundation for support. The authors
wish to thank Prof. F. Campagna (University of Bari,
Italy) for the kind gift of a pure sample of 3-phenyl-5H-
pyridazino[4,3-b]indole.
Su p p or tin g In for m a tion Ava ila ble: Tables of relevant
details of the X-ray crystallographic studies and tables of final
atomic parameters, full bond lengths and angles, anisotropic
thermal parameters, hydrogen atom positions, selected torsion
angles, and various least-squares planes (7 pages). Ordering
information is given on any current masthead page.
Refer en ces
(1) Tipton, K. F. Enzymology of monoamine oxidase. Cell Biochem.
Funct. 1986, 4, 79-87.
(2) Kalgutkar, A. S.; Castagnoli, N., J r.; Testa, B. Selective inhibitors
of monoamine oxidase (MAO-A and MAO-B) as probes of its
catalytic site and mechanism. Med. Res. Rev. 1995, 15, 325-
388.
(3) (a) Bach, A. W. J .; Lan, N. C.; J ohnson, D. L.; Abell, C. W.;
Bembenek, M. E.; Kwan, S. W.; Seeburg, P. H.; Shih, J . C. cDNA
cloning of human liver monoamine oxidase A and B: Molecular
basis of differences in enzymatic properties. Proc. Natl. Acad.
Sci. U.S.A. 1988, 85, 4934-4938. (b) Grimsby, J .; Chen, K.;
Wang, L. J .; Lan, N. C.; Shih, J . C. Molecular basis of human
MAO A and B. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 3637-
3641.
(4) (a) Wu, H.-F.; Chen, K.; Shih, J . C. Site-directed mutagenesis
of monoamine oxidase A and B: role of cysteines. Mol. Phar-
macol. 1993, 43, 888-893. (b) Zhong, B.; Silverman, R. B.
Identification of the active site cysteine in bovine liver monoam-
ine oxidase B. J . Am. Chem. Soc. 1997, 119, 6690-6691. (c)
Tsugeno, Y.; Ito, A.; A key amino acid responsible for substrate
selectivity of monoamine oxidase A and B. J . Biol. Chem. 1997,
272, 14033-14036.
(5) Langston, J . W.; Ballard, P.; Tetrud, J . W.; Irwin, I. Chronic
parkinsonism in humans due to a product of meperidine-analog
synthesis. Science 1983, 219, 979-980.
(6) Strolin-Benedetti, M.; Dostert, P. L. Monoamine oxidase: From
physiology and pathophysiology to the design and clinical
application of reversible inhibitors. In Advances in Drug Re-
search; Testa, B., Ed.; Academic Press: London, U.K., 1992; Vol.
23, pp 65-125.
(7) (a) Allain, H.; Bentue´-Ferrer, D.; Belliard, S.; Derousne´, C.
Pharmacology of Alzheimer’s disease. In Progress in Medicinal
Chemistry; Ellis, C. P., Luscombe, D. K., Eds; Elsevier Science:
Amsterdam, NL, 1997; Vol. 34, pp 1-67. (b) Freedman, M.;
Rewilak, D.; Xerri, T.; Cohen, S.; Gordon, A. S.; Shandling, M.;
Logan, A. G. L-deprenyl in Alzheimer’s disease: Cognitive and
behavioral effects. Neurology 1998, 50, 660-668. (c) Bongioanni,
P.; Mondino, C.; Boccardi, B.; Borgna, M.; Castagna. M. Neuro-
degener. 1996, 5, 351-357.
(8) (a) Youdim, M. B. H.; Finberg, J . P. M. New directions in
monoamine oxidase A and B selective inhibitors and substrates.
Biochem. Pharmacol. 1991, 41, 155-162. (b) Cesura, A. M.;
Pletscher, A. The new generation of monoamine oxidase inhibi-
tors. In Progress in Drug Research; J ucker, E., Ed.; Birkha¨user
Verlag: Basel, Switzerland, 1992; Vol. 38, pp 171-297. (c) Da
Prada, M.; Kettler, R.; Keller, H. H.; Cesura, A. M.; Richards,
J . G.; Saura Marti, J .; Muggli-Maniglio, D.; Wyss, P. C.; Kyburz,
E.; Imhof, R. From moclobemide to Ro 19-6327 and Ro 41-1049:
The development of a new class of reversible, selective MAO-A
and MAO-B inhibitors. J . Neural Transm. [Suppl.] 1990, 29,
279-292.
(17) MacLog P 2.0 program. BioByte Corp., Claremont, CA.
(18) Leo, A. J . The future of log P calculation. In Lipophilicity in Drug
Action and Toxicology. Methods and principles in Medicinal
Chemistry; Pliska, V., Testa, B., Van de Waterbeemd, H., Eds.;
VCH Verlagsgesellschaft: Weinheim, D, 1996; Vol. 4, pp 157-
171.
(19) Dorsey, J . G.; Dill, K. A. The molecular mechanism of retention
in reversed-phase liquid chromatography. Chem. Rev. 1989, 89,
331-346.
(20) (a) Melander, W.; Campbell, D. E.; Horvatth, Cs. Enthalpy-
entropy compensation in reversed-phase chromatography. J .
Chromatogr. 1978, 158, 215-225. (b) Tomlinson, E. Enthalpy-
entropy compensation analysis of pharmaceutical, biochemical
and biological systems. Int. J . Pharm. 1983, 13, 115-144. (c)
Lumry, R.; Rajender, S. Enthalpy-entropy compensation phe-
nomena in water solutions of proteins and small molecules: a
ubiquitous property of water. Biopolymers 1970, 9, 1125-1227.
(d) Tomlinson, E.; Poppe, H.; Kraak, J . C. Thermodynamics of
functional groups in reversed-phase high performance liquid-
solid chromatography. Int. J . Pharm. 1981, 7, 225-243. (e)
Repond, C.; Mayer, J . M.; Van de Waterbeemd, H.; Testa, B.;
Linert, W. Thermodynamics and mechanism of partitioning of
pyridylalkanamides in n-octanol/water and di-n-butyl ether/
water. Int. J . Pharm. 1987, 38, 47-57.
(21) Weissbach, H.; Smith, T. E.; Daly, J . W.; Witkop, B.; Udenfriend,
S. A rapid spectrophotometric assay of monoamine oxidase based
on the rate of disappearance of kynuramine. J . Biol. Chem. 1960,
235, 1160-1163.
(22) Thull, U.; Testa, B. Screening of unsubstituted cyclic compounds
as inhibitors of monoamine oxidases. Biochem. Pharmacol. 1994,
47, 2307-2310.
(23) (a) Da, Y.-Z.; Ito, K.; Fujiwara, H. Energy aspects of oil/water
partition leading to the novel hydrophobic parameters for the
analysis of quantitative structure-activity relationships. J . Med.
Chem. 1992, 35, 3382-3387. (b) Da, Y.-Z., Yanagi, J .; Tanaka,
K.; Fujiwara, H. Termochemical aspects of partition. Quantita-
tive structure-activity relationships of benzyldimethylalkylam-
monium chlorides. Chem. Pharm. Bull. 1993, 41, 227-230. (c)
Kai, J .; Nakamura, K.; Masuda, T.; Ueda, I.; Fujiwara, H.
Thermodynamic aspects of hydrophobicity and the blood-brain
barrier permeability studied with a gel filtration chromatogra-
phy. J . Med. Chem. 1996, 39, 2621-2624.
(24) (a) Mazouz, F.; Lebreton, L.; Milcent, R.; Burstein, C. Inhibition
of monoamine oxidase types
A and B by 2-aryl-4H-1,3,4-
oxadiazin-5(6H)-one derivatives. Eur. J . Med. Chem. 1988, 23,
441-451. (b) Mazouz, F.; Lebreton, L.; Milcent, R.; Burstein, C.
5-Aryl-1,3,4-oxadiazol-2(3H)-one derivatives and sulfur ana-
logues as new selective and competitive monoamine oxidase type
B inhibitors. Eur. J . Med. Chem. 1990, 25, 659-671. (c) Castelli,
F.; Pignatello. R.; Sarpietro, M. G.; Mazzone, P.; Raciti, G.;
Mazzone, G. Correlation between monoamino oxidase inhibitor
activity of some thiazol-2-ylhydrazines and their interaction with
dipalmitoylphopsphatidilcoline liposomes. J . Pharm. Sci. 1994,
83, 362-366.
(9) Altomare, C.; Carrupt, P.-A.; Gaillard, P.; El Tayar, N.; Testa,
B.; Carotti, A. Quantitative structure-metabolism relationship
analyses of MAO-mediated toxication of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine and analogues. Chem. Res. Toxicol.
1992, 5, 366-375.
(10) Thull, U.; Kneubu¨hler, S.; Gaillard, P.; Carrupt, P.-A.; Testa,
B.; Altomare, C.; Carotti, A.; J enner, P.; McNaught, K. St. P.
Inhibition of monoamine oxidase by isoquinoline derivatives:
Qualitative and 3D-quantitative structure-activity relationships.
Biochem. Pharmacol. 1995, 50, 869-877.