Organic & Biomolecular Chemistry
Communication
additional substituents R3 were put on the benzoyl benzene
rings. By installing para-substituents R3, the reactions provided
ortho-addition products 7i–7k as major products along with
minor ipso-addition products 7i′–7k′ regardless of the elec-
tronic nature of the substituents R3 (Scheme 4-b).17 On the
other hand, putting a methyl group at the ortho position (for
the reaction of 6l) rendered the ipso addition product 7l′ major
presumably because the helical sense of the C–C bond due to
the ortho methyl group made interaction between the amidinyl
radical and the ipso carbon smoother (path b) (Scheme 4-c). In
the case of N-2-naphthoylamidoxime 6m, the amination reac-
tion exclusively occurred with the ortho α-carbon (marked in
green) to give 7m in 79% yield (Scheme 4-d).
Res., 2012, 45, 911; (d) J. Du Bois, Org. Process Res. Dev.,
2011, 15, 758; (e) F. Collet, C. Lescot and P. Dauban, Chem.
Soc. Rev., 2011, 40, 1926; (f) D. N. Zalatan and J. Du Bois,
Top. Curr. Chem., 2010, 292, 347; (g) F. Collet, R. H. Dodd
and P. Dauban, Chem. Commun., 2009, 5061;
(h) M. M. Díaz-Requejo and P. J. Pérez, Chem. Rev., 2008,
108, 3379.
4 For recent examples of radical-mediated (non-nitrene-
based) aliphatic C–H amination reactions, see:
(a) Y. Amaoka, S. Kamijo, T. Hoshikawa and M. Inoue,
J. Org. Chem., 2012, 77, 9959; (b) Q. Michaudel, D. Thevenet
and P. S. Baran, J. Am. Chem. Soc., 2012, 134, 2547; (c) Z. Ni,
Q. Zhang, T. Xiong, Y. Zheng, Y. Li, H. Zhang, J. Zhang and
Q. Liu, Angew. Chem., Int. Ed., 2012, 51, 1244;
(d) R. T. Gephart III, D. L. Huang, M. J. B. Aguila,
G. Schmidt, A. Shahu and T. H. Warren, Angew. Chem., Int.
Ed., 2012, 51, 6488; (e) S. Sakagushi, T. Hirabayashi and
Y. Ishii, Chem. Commun., 2002, 516; (f) H. Togo, Y. Harada
and M. Yokoyama, J. Org. Chem., 2000, 65, 926.
5 (a) H. Chen, S. Sanjaya, Y.-F. Wang and S. Chiba, Org. Lett.,
2013, 15, 212; (b) Y.-F. Wang, H. Chen, X. Zhu and S. Chiba,
J. Am. Chem. Soc., 2012, 134, 11980.
6 For Cu-catalyzed oxidative transformation of N-alkenyl-
amidines for the synthesis of azaheterocycles, see:
(a) S. Sanjaya and S. Chiba, Org. Lett., 2012, 14, 5342;
(b) Y.-F. Wang, X. Zhu and S. Chiba, J. Am. Chem. Soc.,
2012, 134, 3679.
Conclusions
In summary, we have developed CuI-catalyzed redox neutral
sp3 and sp2 C–H amination reactions of readily available
N-alkyl- and N-benzoylamidoximes, affording dihydro-
imidazoles and quinazolinones, respectively. Application of
these catalytic redox-neutral radical strategies to intermole-
cular C–H amination is now under investigation in our
laboratory.
This work was supported by funding from Nanyang Techno-
logical University and the Singapore Ministry of Education
(Academic Research Fund Tier 2: MOE2012-T2-1-014).
7 Zard reported the generation of amidinyl radicals from
O-benzoyl amidoximes under the stannane-diazo initiator
system or the Ni-AcOH conditions, see: D. Gennet,
S. Z. Zard and H. Zhang, Chem. Commun., 2003, 1870.
8 For reports on single-electron-reduction of the oxime N–O
bonds with Cu(I) species, see: (a) M.-N. Zhao, H. Liang,
Z.-H. Ren and Z.-H. Guan, Synthesis, 2012, 1501;
(b) K. Tanaka, M. Kitamura and K. Narasaka, Bull. Chem.
Soc. Jpn., 2005, 78, 1659; (c) Y. Koganemaru, M. Kitamura
and K. Narasaka, Chem. Lett., 2002, 784; (d) J. Boivin,
A.-M. Schiano, S. Z. Zard and H. Zhang, Tetrahedron Lett.,
1999, 40, 4531; (e) J. Boivin, A.-M. Schiano and S. Z. Zard,
Tetrahedron Lett., 1992, 33, 7849.
9 J. K. Kochi, A. Bemis and C. L. Jenkins, J. Am. Chem. Soc.,
1968, 90, 4616.
10 For reviews on redox-neutral C–H functionalization, see:
(a) B. Peng and N. Maulide, Chem.–Eur. J., 2013, 19, 13274;
(b) F. W. Patureau and F. Glorius, Angew. Chem., Int. Ed.,
2011, 50, 1977.
Notes and references
1 For general reviews, see: (a) L. D. Quin and J. Tyrell, Funda-
mentals of Heterocyclic Chemistry: Importance in Nature and
in the Synthesis of Pharmaceuticals, John Wiley & Sons Inc.,
New York, 2010; (b) Comprehensive Heterocyclic Chemistry
III, ed. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven and
R. J. K. Taylor, Pergamon, Oxford, 2008; (c) Comprehensive
Heterocyclic Chemistry II, ed. A. R. Katritzky, E. F. V. Scriven
and C. W. Rees, Pergamon, Oxford, 1996; (d) Comprehensive
Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees,
Pergamon, Oxford, 1984; (e) T. Eicher and S. Hauptmann,
The Chemistry of Heterocycles, Wiley-VCH, Weinheim,
2003.
2 For selected reviews, see: (a) G. L. Thomas and
C. W. Johannes, Curr. Opin. Chem. Biol., 2011, 15, 516;
(b) R. Tohme, N. Darwiche and H. Gali-Muhtasib, Mole-
cules, 2011, 16, 9665; (c) S. Dandapani and 11 For reports on other types of redox-neutral transition-
L. A. Marcaurelle, Curr. Opin. Chem. Biol., 2010, 14, 362;
(d) M. E. Welsch, S. A. Snyder and B. R. Stockwell, Curr.
Opin. Chem. Biol., 2010, 14, 347; (e) J. S. Carey, D. Laffan,
C. Thomson and M. T. Williams, Org. Biomol. Chem., 2006,
4, 2337.
3 For recent reviews on C–H amination, see: (a) J. L. Jeffrey
and R. Sarpong, Chem. Sci., 2013, 4, 4092; (b) R. T. Gephart
III and T. H. Warren, Organometallics, 2012, 31, 7728;
(c) J. L. Roizen, M. E. Harvey and J. Du Bois, Acc. Chem.
metal-catalyzed C–H functionalizations with oximes, see:
(a) N. Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem.
Soc., 2011, 133, 6449; (b) P. C. Too, S. Z. Chua, S. H. Wong
and S. Chiba, J. Org. Chem., 2011, 76, 6159; (c) P. C. Too,
T. Noji, Y. J. Lim, X. Li and S. Chiba, Synlett, 2011, 2789;
(d) T. K. Hyster and T. Rovis, Chem. Commun., 2011, 47,
11846; (e) X. Zhang, D. Chen, M. Zhao, J. Zhao, A. Jia and
X. Li, Adv. Synth. Catal., 2011, 353, 719; (f) Y. Tan and
J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 3676;
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 42–46 | 45