Organometallics
Communication
with the Cp2Ti complexes 5 is very much different from that of
the Cp2Zr complexes 1.
nitriles with zirconacyclobutene−silacyclobutene fused-ring
complexes 1. The strained fused-ring skeletons, the sterically
demanding environments around the metal centers and the silyl
groups, and the different sizes of the metals are all considered
to contribute to the different reactivities. Further investigation
into the reaction mechanism and synthetic applications for the
synthesis of silacycles are ongoing.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, figures, tables, and CIF files giving crystallographic data,
full experimental procedures, NMR spectra, and details for the
preparation of complexes 6. This material is available free of
AUTHOR INFORMATION
Corresponding Author
(Z.X.).
■
Figure 2. ORTEP drawings of 6d (left) and 6e (right) with 30%
probability thermal ellipsoids. Hydrogen atoms and THF in 6e are
omitted for clarity. Selected bond lengths (Å) and angles (deg) are as
follows. For 6d: Ti1−C17 2.131(2), Ti1−C3 2.1724(19), C2−C3
1.481(3), C2−C17 1.363(3), C1−C2 1.500(3), C3−C4 1.364(3),
Si1−C4 1.873(2), Si1−N1 1.7484(17), N1−C1 1.281(3); N1−Si1−
C4 105.72(9). For 6e: Ti1−C3 2.133(2), Ti1−C4 2.154(2), C2−C4
1.481(3), C2−C3 1.366(3), C1−C2 1.491(3), C4−C5 1.353(3), Si1−
C5 1.859(2), Si1−N1 1.7446(19), N1−C1 1.285(3); N1−Si1−C5
106.80(9).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Major State Basic Research
Development Program (2012CB821600) and the Natural
Science Foundation of China.
Although a direct insertion of the C−N triple bond into the
silacyclobutene ring of complex 5 cannot be totally excluded,
the proposed pathway shown in Scheme 4 for the formation of
REFERENCES
■
(1) For reviews of zirconacycles and titanacycles, see: (a) Broene, R.
D.; Buchwald, S. L. Science 1993, 261, 1696−1701. (b) Negishi, E.;
Takahashi, T. Bull. Chem. Soc. Jpn. 1998, 71, 755−769. (c) Takahashi,
T.; Xi, Z.; Kotora, M. Recent Res. Dev. Pure Appl. Chem. 1998, 2, 515−
525. (d) Takahashi, T.; Kotora, M.; Hara, R.; Xi, Z. Bull. Chem. Soc.
Jpn. 1999, 72, 2591−2602. (e) Sato, F.; Urabe, H.; Okamoto, S. Chem.
Rev. 2000, 100, 2835−2886. (f) Rosenthal, U.; Pellny, P.-M.;
Kirchbauer, F. G.; Burlakov, V. V. Acc. Chem. Res. 2000, 33, 119−
129. (g) Takahashi, T.; Li, Y. In Titanium and Zirconium in Organic
Synthesis; Marek, I., Ed.; Wiley-VCH: Weinhein, Germany, 2002; pp
Scheme 4. Proposed Mechanism for the Formation of 6
50−85. (h) Erker, G.; Kehr, G.; Frohlich, R. J. Organomet. Chem. 2004,
̈
689, 4305−4318. (i) Xi, Z.; Li, Z. Top. Organomet. Chem. 2004, 8, 27−
56. (j) Negishi, E. Dalton Trans. 2005, 827−848. (k) Rosenthal, U.;
Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A. Organo-
metallics 2005, 24, 456−471. (l) Rosenthal, U.; Burlakov, V. V.; Bach,
M. A.; Beweries, T. Chem. Soc. Rev. 2007, 36, 719−728. (m) Suzuki,
N.; Hashizume, D. Coord. Chem. Rev. 2010, 254, 1307−1326.
(n) Chen, C.; Xi, C. Chin. Sci. Bull. 2010, 55, 3235−3247.
(o) Beweries, T.; Haehnel, M.; Rosenthal, U. Catal. Sci. Technol.
2013, 3, 18−28.
(2) For selected examples of zirconacycles, see: (a) Erker, G.;
Zwettler, R.; Kruger, C.; Hyla-Kryspin, I.; Gleiter, R. Organometallics
̈
1990, 9, 524−530. (b) Takahashi, T.; Xi, Z.; Kotora, M.; Xi, C.;
Nakajima, K. Tetrahedron Lett. 1996, 37, 7521−7524. (c) Liu, Y.; Sun,
W.-H.; Nakajima, K.; Takahashi, T. Chem. Commum. 1998, 1133−
1134. (d) Dumond, Y.; Negishi, E. J. Am. Chem. Soc. 1999, 121,
11223−11224. (e) Liu, Y.; Liu, M.; Song, Z. J. Am. Chem. Soc. 2005,
127, 3662−3663. (f) Fu, X.; Chen, J.; Li, G.; Liu, Y. Angew. Chem., Int.
Ed. 2009, 48, 5500−5504. (g) Yan, X.; Zhou, Y.; Xi, C. Chem.
Commun. 2010, 46, 7801−7803. (h) Gessner, V. H.; Tannacl, J. F.;
Miller, A. D.; Tilley, T. D. Acc. Chem. Res. 2011, 44, 435−446. (i) Fu,
X.; Yu, S.; Fan, G.; Liu, Y.; Li, Y. Organometallics 2012, 31, 531−534.
(3) For selected examples of titanacycles, see: (a) Polse, J. L.;
Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 13405−
13414. (b) Theilmann, O.; Ruhmann, M.; Villinger, A.; Schulz, A.;
Seidel, W. W.; Kaleta, K.; Beweries, T.; Arndt, P.; Rosenthal, U. Angew.
Chem., Int. Ed. 2010, 49, 9282−9285. (c) Burlakov, V. V.; Kaleta, K.;
Beweries, T.; Arndt, P.; Baumann; Spannenberg, W. A.; Shur, V. B.;
complex 6 is more likely. No reaction was observed when the
silacyclobutene derivative 7 was treated with nitriles in refluxing
benzene after 24 h. The existence of the titanacyclopenta-
diene−silacyclopropane fused-ring complex 9 or its zircono-
cene analogue has been proposed by Takahashi and Mach.4−6
The silacyclopropane moiety in 9 is highly strained and should
be very reactive.8 Thus, a C−N triple bond is proposed to
insert into the Si−C bond, leading to the formation of the
intermediate 10. Then, skeletal rearrangements via a silyl 1,2-
shift would take place to give the final complex 6.
In summary, we have demonstrated that the reaction pattern
of nitriles with titanacyclobutene−silacyclobutene fused-ring
complexes 5 is totally different from the reaction pattern of
10
dx.doi.org/10.1021/om401065c | Organometallics 2014, 33, 8−11