1993, p. 89; G. J. Leigh, Acc. Chem. Res., 1992, 25, 177; R. L.
(CDCl3): δ 7.65–6.95 (m, 20 H, C6H5) and 3.56 (s, 6 H,
CNCH3). 31P-{1H} NMR (CDCl3): δ Ϫ136.34 (s).
Richards, in Biology and Biochemistry of Nitrogen Fixation, eds.
M. J. Dilworth and A. R. Glenn, Elsevier, Amsterdam, 1991, p. 58.
4 A. Cusanelli and D. Sutton, Organometallics, 1995, 14, 4651.
5 T. Nicholson, J. Cook, A. Davison, D. J. Rose, K. P. Maresca, J. A.
Zubieta and A. G. Jones, Inorg. Chim. Acta, 1996, 252, 427.
6 J. Chatt, J. R. Dilworth, G. J. Leigh and V. D. Gupta, J. Chem. Soc.
A, 1971, 2631.
[ReBr(NNPh)(CNMe)2(PPh3)2] 7. Although this complex
could also be obtained (ca. 30% yield) in the above procedure
for 6, its direct synthesis from [ReBr2(NNPh)2(PPh3)2]Br 1 con-
stitutes a better method, as follows. The compound CNMe (40
µl, 0.78 mmol) was added to a suspension of 1 (0.15 g, 0.13
mmol) in thf or acetone (30 cm3) which was then stirred for 3 d.
The green solid of 7 was filtered off, washed with thf (or
acetone)–Et2O and dried in vacuo. A further crop was obtained
upon concentration of the mother-liquor and addition of
pentane. Recrystallization from CH2Cl2–Et2O gave 7 as a green
microcrystalline solid which was filtered off, washed with Et2O
and dried in vacuo (ca. 40% yield) (Found: C, 53.1; H, 4.2;
7 M. T. A. Ribeiro, A. J. L. Pombeiro, J. R. Dilworth, Y. Zheng and
J. R. Miller, Inorg. Chim. Acta, 1993, 211, 131.
8 B. L. Haymore and J. A. Ibers, J. Am. Chem. Soc., 1973, 95, 3052;
J. W. Dart, M. K. Lloyd, R. Mason and J. A. McCleverty, J. Chem.
Soc., Dalton Trans., 1973, 2039; R. B. King and M. S. Saran, Inorg.
Chem., 1974, 13, 364.
9 E. Singleton and H. E. Oosthuizen, Adv. Organomet. Chem., 1983,
22, 209.
10 B. K. Burgess, in Molybdenum Enzymes, ed. T. G. Spiro, Wiley, New
York, 1985, p. 161.
11 A. J. L. Pombeiro, New J. Chem., 1994, 18, 163; A. J. L. Pombeiro
and R. L. Richards, Trends Organomet. Chem., 1994, 1, 263;
R. Herrmann and A. J. L. Pombeiro, Química, 1995, 59, 16; A. J. L.
Pombeiro, in Transition Metal Carbyne Complexes, ed. F. R. Kreissl,
NATO ASI Series, Kluwer, Dordrecht, 1993, p. 105; A. J. L.
Pombeiro and R. L. Richards, Coord. Chem. Rev., 1990, 104, 13.
12 M. F. N. N. Carvalho, A. J. L. Pombeiro, U. Schubert, O. Orama,
C. J. Pickett and R. L. Richards, J. Chem. Soc., Dalton Trans., 1985,
2079.
13 M. F. N. N. Carvalho and A. J. L. Pombeiro, J. Organomet. Chem.,
1990, 384, 121.
14 (a) J. R. Dilworth, S. A. Harrison, D. R. M. Walton and E. Schweda,
Inorg. Chem., 1985, 24, 2594; (b) T. Nicholson and J. Zubieta, Inorg.
Chim. Acta, 1985, 100, L35; (c) T. Nicholson, P. Lombardi and
J. Zubieta, Polyhedron, 1987, 7, 1577.
N, 4.6. Calc. for C46H41BrN3P2ReؒCH2Cl2: C, 53.2; H, 4.1; N,
᎐
5.3%). IR (KBr pellet): 2220ms [ν(C᎐N)], 1630s and 1560ms
᎐
cmϪ1 [ν(NN)]. FAB mass spectrum: m/z 977 (Mϩ).
Crystallography
Crystal data. C48H40Br2N4P2Re 2, Mr = 1080.83, triclinic,
a = 12.334(2), b = 12.146(2), c = 17.844(3) Å, α = 62.02(1),
β = 91.99(1), γ = 71.55(1)Њ, U = 2185.1(7) Å3, T = 293 K, space
Ϫ3
¯
group P1 (no. 2), Z = 2, Dc = 1.64 g cm , µ(Mo-Kα) = 4.69
mmϪ1, specimen 0.4 × 0.5 × 0.3 mm, 5987 reflections measured,
5581 unique (Rint = 0.0185), 5418 (F2 > 0) which were used in all
calculations. The final wR(F2) was 0.113, R1 = 0.042.
The unit cell and orientation matrix were obtained by least-
squares refinement of 25 automatically centred reflections
14 < θ < 18Њ, in an Enraf-Nonius TURBO CAD4 diffract-
ometer equipped with a rotating anode, using graphite-
monochromated radiation. Three standard reflections were
monitored during data collection (1.5 < θ< 25Њ), but no decay
or instrumental instability was detected. Using the CAD4 soft-
ware, data were corrected for Lorentz-polarization effects and
empirically for absorption. 5418 Reflections were used in struc-
ture solution and refinement of 554 parameters. The position of
the Re atom was obtained by a three-dimensional Patterson
synthesis, and all the other non-hydrogen atoms were located in
subsequent Fourier-difference maps and refined with aniso-
tropic thermal motion parameters. The hydrogen atoms were
inserted in calculated positions and refined isotropically with
fixed distances to the parent carbon atom. The program
SHELXS 8633 was used in the structure solution and SHELXL
9334 in the refinement of the crystal structure; the illustration
was drawn with ORTEP II.35 The atomic scattering factors and
anomalous scattering terms were taken from ref. 36.
15 B. L. Haymore, unpublished work (ref. 400 cited in ref. 2).
16 T. Nicholson, N. de Vries, A. Davison and A. G. Jones, Inorg.
Chem., 1989, 28, 3813.
17 V. Gutmann and R. Schmid, Coord. Chem. Rev., 1974, 12, 263; P. C.
Maria and J. F. Gal, J. Phys. Chem., 1985, 89, 1296; J. C. Scaiano
and L. C. Stewart, J. Am. Chem. Soc., 1983, 105, 3609.
18 R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition
Metal Complexes, VCH, Weinheim, 1991, p. 116; K. Conners,
Chemical Kinetics, the Study of Reaction Rates in Solution, VCH,
New York, 1990, p. 390; S. H. Pine, J. B. Hendrickson, D. J. Cram
and G. S. Hammond, Organic Chemistry, McGraw-Hill,
Kogakusha, 1981, p. 387.
19 C. F. Barrientos-Penna, F. W. B. Einstein and D. Sutton, Inorg.
Chem., 1980, 19, 2740.
20 J. Chatt, J. R. Dilworth and R. L. Richards, Chem. Rev., 1978, 78,
589.
21 M. T. A. R. S. Costa and A. J. L. Pombeiro, unpublished work.
22 J. Chatt, R. A. Head, G. J. Leigh and C. J. Pickett, J. Chem. Soc.,
Dalton Trans., 1978, 1638.
23 P. Braunstein, J. Chem. Soc., Chem. Commun., 1973, 851;
P. Braunstein and R. J. H. Clark, Inorg. Chem., 1974, 13, 2224.
24 A. P. Gaughan, B. L. Haymore, J. A. Ibers, W. H. Myers, T. E.
Nappier and D. W. Meek, J. Am. Chem. Soc., 1973, 95, 6859.
25 E. R. Moller and K. A. Jorgensen, Acta Chem. Scand., 1991, 45,
68.
26 T. Nicholson and J. Zubieta, Inorg. Chem., 1987, 26, 2094.
27 R. E. Gobbledick, F. W. B. Einstein, N. Farrel, A. B. Gilchrist and
D. Sutton, J. Chem. Soc., Dalton Trans., 1977, 373.
28 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson
and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1.
29 J. Chatt, C. T. Kan, G. J. Leigh, C. J. Pickett and D. R. Stanley,
J. Chem. Soc., Dalton Trans., 1980, 2032.
CCDC reference number 186/995.
graphic files in .cif format.
Acknowledgements
This work has been partially supported by the Junta Nacional
de Investigação Científica
e Tecnológica (JNICT), the
Fundação para a Ciência e Tecnologia (FCT) and the PRAXIS
XXI programme, Portugal. We also thank Professor J. Nixon,
University of Sussex, UK, for the generous gift of a sample of
phosphirene.
30 P. J. Blower, J. R. Dilworth, J. Hutchinson, T. Nicholson and J. A.
Zubieta, J. Chem. Soc., Dalton Trans., 1985, 2639.
31 R. E. Schuster, J. E. Scott and J. Casanova, jun., Org. Synth., 1966,
46, 75.
32 J. Chatt and G. J. Rowe, J. Chem. Soc., 1962, 4019.
33 G. M. Sheldrick, SHELXS 86, Acta Crystallogr., Sect. A, 1990, 46,
467.
34 G. M. Sheldrick, SHELXL 93, A computer program for crystal
structure determination, University of Göttingen, 1993.
35 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge
National Laboratory, Oak Ridge, TN, 1976.
References
1 D. Sutton, Chem. Rev., 1993, 93, 995.
2 B. F. G. Johnson, B. L. Haymore and J. R. Dilworth, in
Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D.
Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 2,
ch. 13.3, p. 99.
3 R. A. Henderson, G. J. Leigh and C. J. Pickett, Adv. Inorg. Chem.,
1983, 27, 197; D. J. Evans, R. A. Henderson and B. E. Smith, in
Bioinorganic Catalysis, ed. J. Reedijk, Marcel Dekker, New York,
36 International Tables for X-Ray Crystallography, Kynoch Press,
Birmingham, 1974, vol. 4.
Received 2nd February 1998; Paper 8/00898A
2410
J. Chem. Soc., Dalton Trans., 1998, Pages 2405–2410