A. C. Weymouth-Wilson et al. / Tetrahedron Letters 50 (2009) 6307–6310
6309
the exotherm and maintain the reaction temperature below 45 °C.
TLC analysis (EtOAc:EtOH:H2O, 45:5:1) after a further 30 min
showed complete consumption of starting material (Rf 0.44) and
clean conversion into aldehyde 11L (Rf 0.67). The thick precipitate
was removed by filtration and the filter cake washed with
THF:water (10:1, 250 mL). The combined filtrates were concen-
trated in vacuo to give the aldehyde 11L as a residue which was
used for the following step without further purification. A suspen-
sion of the crude aldehyde 11L in trifluoroacetic acid:water (9:1,
200 mL) was stirred at room temperature for 30 min; the reaction
mixture was then warmed to 45 °C for 30 min by which time a
clear solution formed. TLC analysis (EtOAc:EtOH:H2O, 45:5:1)
showed clean conversion into the deprotected lactone 12L (Rf
0.51). Trifluoroacetic acid was evaporated under reduced pressure
following co-evaporation with toluene (2 ꢂ 100 mL). Water
(250 mL) and ethyl acetate (100 mL) were added to the oily resi-
due; the aqueous layer was collected and the organic phase ex-
tracted with water (50 mL). The combined aqueous layers were
then washed with ethyl acetate (50 mL) and concentrated to give
cessively with aqueous hydrochloric acid (1 N, 100 mL), water
(100 mL), saturated aqueous sodium bicarbonate (200 mL) and
water (100 mL). The organic layer was then dried (magnesium sul-
fate) and concentrated under reduced pressure. Crystallization of
the residue from hot cyclohexane (60 mL) gave the pure diaceto-
nide 1L (22 g, 39% over two steps) [mp 108–110 °C; ½a D25
ꢀ
+17.0
(c, 1.03 in H2O). For the enantiomer 1D lit.27 mp 110–111 °C;
½
a 1D5
ꢀ
ꢁ18.4 (c, 1.2 in H2O)].
2.6.
L-Glucose 4L
Trifluoroacetic acid (25 mL) was added to a solution of the crude
monoacetonide 2L (64.8 g, assumed 0.215 mol) in water (400 mL)
and the reaction mixture stirred at 40 °C. TLC analysis (BuOH:E-
tOH:H2O, 5:3:2) after 1 h showed the formation of a major product
(Rf 0.51). The reaction mixture was concentrated to 75 mL and
loaded onto an IR120 column (H+ form, 500 g), eluting with water.
The fractions containing L-glucose were combined and concen-
trated to 75 mL before being loaded onto a Dowex 1 ꢂ 4 column
a viscous oil, which crystallized on standing to afford
L
-glucurono-
(HOꢁ form, 500 g), eluting with water, and the product fractions
lactone 12L (59 g, 99% over two steps), mp 164–168 °C; ½a D25
ꢀ
initial:
concentrated to yield L-glucose 1L (15.9 g, 41% over two steps)
ꢁ17.8; equilibrium: ꢁ21.5 (c, 1.05 in H2O) [lit.22 mp 165–167 °C;
[mp 138–146 °C; ½a D25
initial: ꢁ107.4; equilibrium: ꢁ53.0 (c, 1.05
ꢀ
½
a 2D2
ꢀ
ꢁ18 (c, 2.0 in H2O); for enantiomer 12D lit.25 mp 168–
in H2O), lit.28 mp 128–142 °C; ½a 2D3
ꢁ52 (c, 0.8 in H2O)].
ꢀ
170 °C; ½a 2D5
ꢀ
+18.7 (c, 1.0 in H2O)].
References and notes
2.3. 1,2-O-Isopropylidene-a-L-glucurono-3,6-lactone 3L
1. Hanessian, S. Total Synthesis of Natural Products: Chiron Approach; Elsevier,
1983, ISBN: 0080307159.
2. (a) Ojeda, R.; De Paz, J. L.; Martin-Lomas, M.; Lassaletta, J. M. Synlett 1999,
1316–1318; (b) Ke, W.; Whitfield, D. M.; Gill, M.; Larocque, S.; Yu, S.-H.
Tetrahedron Lett. 2003, 44, 7767–7770.
3. Watanabe, Y.; Mitani, M.; Ozaki, S. Chem. Lett. 1987, 123–126.
4. Kitahara, T.; Ogawa, T.; Naganuma, T.; Matsui, M. Agric. Biol. Chem. 1974, 38,
2189–2190.
5. (a) Bashyal, B. P.; Chow, H.-F.; Fellows, L. E.; Fleet, G. W. J. Tetrahedron 1987, 43,
415–418; (b) Bashyal, B. P.; Chow, H.-F.; Fleet, G. W. J. Tetrahedron Lett. 1986,
27, 3205–3208.
A solution of concentrated sulfuric acid (50 mL, 0.96 mol) in
acetone (1.5 L) was added to -glucuronolactone 12L (169 g,
L
0.960 mol) in a 3-L round-bottomed flask and the mixture stirred
at 20 °C for 3 h. TLC analysis (petroleum-ether 40–60:acetone,
7:3) revealed the formation of a major product (Rf 0.28) and the
reaction mixture was quenched by the addition of solid sodium
bicarbonate (ꢃ900 g). The resulting precipitate was removed by fil-
tration and the filter cake washed with acetone (500 mL). The com-
bined organic filtrates were evaporated to give the acetonide 3L
6. Albert, R.; Dax, K.; Seidl, S.; Sterk, H.; Stuetz, A. E. J. Carbohydr. Chem. 1985, 4,
513–520.
(206 g, 99%), [mp 118–120 °C; ½a D25
ꢀ
ꢁ56.9 (c, 1.09 in CHCl3); lit.22
7. Gurjar, M. K.; Pawar, S. M. Tetrahedron Lett. 1987, 28, 1327–1328.
8. (a) Masaguer, C. F.; Blériot, Y.; Charlwood, J.; Winchester, B. G.; Fleet, G. W. J.
Tetrahedron 1997, 53, 15147–15156; (b) Blériot, Y.; Masaguer, C. F.; Charlwood,
J.; Winchester, B. G.; Lane, A. L.; Crook, S.; Watkin, D. J.; Fleet, G. W. J.
Tetrahedron 1997, 53, 15135–15146; (c) Dax, K.; Fechter, M.; Gradnig, G.;
Grassberger, V.; Illaszewicz, C.; Ungerank, M.; Stuetz, A. E. Carbohydr. Res. 1991,
217, 59–70.
mp 122–123 °C; ½a D20
ꢁ68 (c, 1.2 in H2O); for the enantiomer 3D
ꢀ
lit.5a mp 120.5–121.5 °C; ½a 2D0
ꢀ
+52.5 (c, 1.95 in CHCl3)].
2.4. 1,2-O-Isopropylidene-a-L-glucose 2L
9. (a) Witty, D. R.; Fleet, G. W. J.; Vogt, K.; Wilson, F. X.; Wang, Y.; Storer, R.;
Myers, P. L.; Wallis, C. J. Tetrahedron Lett. 1990, 31, 4787–4790; (b) Fleet, G. W.
J.; Son, J. C.; Vogt, K.; Peach, J. M.; Hamor, T. A. Tetrahedron Lett. 1988, 29, 1451–
1452; (c) Fleet, G. W. J.; Son, J. C.; Peach, J. M.; Hamor, T. A. Tetrahedron Lett.
1988, 29, 1449–1450; (d) Austin, G. N.; Fleet, G. W. J.; Peach, J. M.; Prout, K.;
Son, J. C. Tetrahedron Lett. 1987, 28, 4741–4745.
10. (a) Anzeveno, P. B.; Creemer, L. J. Tetrahedron Lett. 1990, 31, 2085–2088; (b)
Klemer, A.; Hofmeister, U.; Lemmes, R. Carbohydr. Res. 1979, 68, 391–395; (c)
Paulsen, H.; Guenther, C. Chem. Ber. 1977, 110, 2150–2157.
11. (a) Shing, T. K. M.; Tsui, H. C.; Zhou, Z. H. J. Org. Chem. 1995, 60, 3121–3130; (b)
Shing, T. K. M.; Tsui, H. C.; Zhou, Z. H. J. Chem. Soc., Chem. Commun. 1992, 810–
811; (c) Yoda, H.; Nakaseko, Y.; Takabe, K. Synlett 2002, 1532–1534.
12. (a) Rauter, A. P.; Figueiredo, J.; Ismael, M.; Canda, T.; Font, J.; Figueredo, M.
Tetrahedron: Asymmetry 2001, 12, 1131–1146; (b) Goddard-Borger, E. D.;
Ghisalberti, E. L.; Stick, R. V. Eur. J. Org. Chem. 2007, 3925–3934; (c) Matsuura,
D.; Mitsui, T.; Sengoku, T.; Takahashi, M.; Yoda, H. Tetrahedron 2008, 64,
11686–11696; (d) Xu, D. D.; Waykole, L.; Calienni, J. V.; Ciszewski, L.; Lee, G. T.;
Liu, W.; Szewczyk, J.; Vargas, K.; Prasad, K.; Repic, O.; Blacklock, T. J. Org. Process
Res. Dev. 2003, 7, 856–865.
A solution of sodium borohydride (13.2 g, 0.349 mol) in water
(230 mL) was added over 5 min to a chilled (10 °C) solution of
the lactone 3L (116 g, 0.537 mol) in water (700 mL). The reaction
mixture was stirred for 90 min at 10 °C and then quenched by
the addition of acetic acid (20 mL, 0.348 mol). The reaction mixture
was concentrated under reduced pressure and the water co-evap-
orated with methanol (3 ꢂ 500 mL) at 40 °C to give the crude
monoacetonide 2L (162 g) [Rf 0.49 (EtOAc:EtOH:H2O, 45:5:1)] con-
taining salts which was used for subsequent reactions without fur-
ther purification. An aliquot of the crude product 2L (32.4 g,
assumed 0.107 mol) was purified by column chromatography [0–
2% water in acetone] to afford the pure monoacetonide 2L
(14.2 g, 60%), [mp 156–158 °C; ½a D25
ꢀ
+11.4 (c, 1.07 in H2O), lit.26
mp 160–161 °C; ½a D19
ꢀ
+11.4 (c, 1 in H2O)].
13. Garner, P.; Anderson, J. T. Org. Lett. 1999, 1, 1057–1059.
14. (a) D’Alonzo, D.; Guaragna, A.; Palumbo, G. Curr. Med. Chem. 2009, 16, 473–505;
(b) Clinch, K.; Evans, G. B.; Fleet, G. W. J.; Furneaux, R. H.; Johnson, S. W.; Lenz,
D.; Mee, S.; Rands, P. R.; Schramm, V. L.; Ringia, E. A. T.; Tyler, P. C. Org. Biomol.
Chem. 2006, 4, 1131–1139.
15. (a) Smith, S. S. Toxicol. Sci. 2009, 110, 4–30; (b) Rountree, J. S. S.; Butters, T. D.;
Wormald, M. R.; Boomkamp, S. D.; Dwek, R. A.; Asano, N.; Ikeda, K.; Evinson, E.
L.; Nash, R. J.; Fleet, G. W. J. ChemMedChem 2009, 4, 378–392; (c) Kato, A.; Kato,
N.; Kano, E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.;
Takahata, H.; Asano, N. J. Med. Chem. 2005, 48, 2036–2044; (d) Bleriot, Y.;
Gretzke, D.; Krulle, T. M.; Butters, T. D.; Dwek, R. A.; Nash, R. J.; Asano, N.; Fleet,
G. W. J. Carbohydr. Res. 2005, 340, 2713–2718; (e) Asano, N.; Ikeda, K.; Yu, L.;
Kato, A.; Takebayashi, K.; Adachi, I.; Kato, I.; Ouchi, H.; Takahata, H.; Fleet, G. W.
2.5. 1,2;5,6-Di-O-isopropylidene-a-L-glucose 1L
A stirred suspension of crude monoacetonide 2L (64.8 g, as-
sumed 0.215 mmol) in acetone (500 mL) was adjusted to, pH 2,
by addition of concentrated sulfuric acid and stirred for 2 h at room
temperature after which time the reaction mixture was neutral-
ized by the addition of triethylamine (10 mL) and the solution con-
centrated to dryness in vacuo. The residual syrup was dissolved in
ethyl acetate (200 mL) and the resulting solution was washed suc-