10.1002/anie.201915802
Angewandte Chemie International Edition
COMMUNICATION
Figure 7. EPR spectra at 25 °C of 4m as a sticky red oil (left) and 4m in hexane
solution (by dissolving the sticky red oil) (right)
Keywords: carbenes • conjugation • diradicals •Thiele’s
hydrocarbon • Schlenk’s hydrocarbon
[1]
[2]
Selected review: M. Abe, Chem. Rev. 2013, 113, 7011–7088.
Selected references are: a) D. Scheschkewitz, H. Amii, H. Gornitzka, W.
W. Schoeller, D. Bourissou, G. Bertrand, Science 2002, 295, 1880–
1881; b) H. Grützmacher, F. Breher, Angew. Chem. 2002, 114, 4178–
4184; Angew. Chem. Int. Ed. 2002, 41, 4006–4011; c) Z. Lu, H. Quanz,
O. Burghaus, J. Hofmann, C. Logemann, S. Beeck, P. R. Schreiner, H.
A. Wegner, J. Am. Chem. Soc. 2017, 139, 18488–18491.
[3]
Selected references are: a) Y. Kanzaki, D. Shiomi, K. Sato, T. Takui, J.
Phys. Chem. B 2012, 116, 1053–1059; b) P. Ravat, M. Baumgarten,
Phys. Chem. Chem. Phys. 2015, 17, 983–991; c) W. T. Borden, H.
Iwamura, J. A. Berson, Acc. Chem. Res. 1994, 27, 109–116; d) G. E.
Rudebusch, G. L. Espejo, J. L. Zafra, M. P.-Alvarez, S. N. Spisak, K.
Fukuda, Z. Wei, M. Nakano, M. A. Petrukhina, J. Casado, M. M. Haley,
J. Am. Chem. Soc. 2016, 138, 12648–12654; e) X. Zhu, H. Tsuji, K.
Nakabayashi, S. Ohkoshi, E. Nakamura, J. Am. Chem. Soc. 2011, 133,
16342–16345.
[4]
[5]
Selected references are: a) X. Hu, W. Wang, D. Wang Y. Zheng, J.
Mater. Chem. C 2018, 6, 11232–11242; b) G. Li, H. Phan, T. S. Herng,
T. Y. Gopalakrishna, C. Liu, W. Zeng, J. Ding, J. Wu, Angew. Chem.
2017, 129, 5094–5098; Angew. Chem. Int. Ed. 2017, 56, 5012–5016; c)
Y. Ni, S. Lee, M. Son, N. Aratani, M. Ishida, A. Samanta, H. Yamada,
Y.-T. Chang, H. Furuta, D. Kim, J. Wu, Angew. Chem. 2016, 128,
2865–2869; Angew. Chem. Int. Ed. 2016, 55, 2815–2819.
Figure 8. Molecular structure of 4m
with thermal ellipsoids at 50 %. All
2
hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond
angles [°]: N1‒C1 1.391(5), C1‒C5 1.370(6), C5‒C6 1.465(6), C6‒C7 1.341(5),
C7‒C8 1.512(6), C8‒C9 1.501(6), C9‒C10 1.336(6), C10‒C5 1.443(6),
C7‒C11 1.535(6), C8‒C11’ 1.594(5), C11‒N2 1.478(5); N1‒C1‒C2 109.33(30),
N2‒C11‒C12 103.00(26).
Selected references are: a) Y. Liu, P. Varava, A. Fabrizio, L. Y. M.
Eymann, A. G. Tskhovrebov, O. M. Planes, E. Solari, F. F.-Tirani, R.
Scopelliti, A. Sienkiewicz, C. Corminboeuf, K. Severin, Chem. Sci. 2019,
10, 5719–5724; b) T. Y. Gopalakrishna, W. Zeng, X. Lu, J. Wu, Chem.
Commun. 2018, 54, 2186–2199; c) Z. Zeng, X. Shi, C. Chi, J. T. Lopez
Navarrete, J. Casado J. Wu, Chem. Soc. Rev. 2015, 44, 6578–6596.
M. Gomberg, J. Am. Chem. Soc. 1900, 22, 757–771.
In 4m2, the sum of the bond angles around C1 (ƩC1 =
359.9°) and C11 (ƩC11 = 325.84°) indicate that the respective
centres adopt a planar and a pyramidal geometry, respectively.
The C1-C5 bond distance is 1.370(6) Å whereas the C7-C11
bond distance is 1.535(6) Å. The six-membered ring (C8-C7-
C11-C8'-C7'-C11') in the dimer adopts a chair conformation
(Figure 8).[18] Theoretical calculations show that dimerization of
4m to form 4m2 is favored, with ΔG298 = –10.4 kcal/mol.[17]
In conclusion, we have designed and synthesized the first
CAAC-based Thiele and Schlenk hydrocarbons without the use
of CAAC as a precursor. The CAAC analogue of the Thiele
hydrocarbon displays a singlet ground state (Kekulé diradical)
while the CAAC analogue of the Schlenk hydrocarbon shows
two unpaired electrons (non-Kekulé diradical) and undergoes an
[6]
[7]
[8]
[9]
J. Thiele, H. Balhorn, Ber. Dtsch. Chem. Ges. 1904, 37, 1463–1470.
W. Schlenk, M. Brauns, Ber. Dtsch. Chem. Ges. 1915, 48, 661–669.
Selected references are: a) A. E. Tschitschibabin, Ber. Dtsch. Chem.
Ges. 1907, 40, 1810–1819; b) Z. Sun, Z. Zeng, J. Wu, Acc. Chem. Res.
2014, 47, 2582–2591; c) G. R. Luckhurst, G. F. Pedulli, M. Tiecco, J.
Chem. Soc. B 1971, 329–334; d) I. A. Latif, S. Hansda, S. N. Datta, J.
Phys. Chem. A 2012, 116, 8599−8607; e) Y. Su, X. Wang, X. Zheng, Z.
Zhang, Y. Song, Y. Sui, Y. Li, X. Wang, Angew. Chem. 2014, 126,
2901−2905; Angew. Chem. Int. Ed. 2014, 53, 2857−2861; f) Y. Su, X.
Wang, L. Wang, Z. Zhang, X. Wang, Y. Song, P. P. Power, Chem. Sci.
2016, 7, 6514−6518; g) S. Zheng, S. Barlow, C. Risko, T. L. Kinnibrugh,
V. N. Khrustalev, S. C. Jones, M. Y. Antipin, N. M. Tucker, T. V.
Timofeeva, V. Coropceanu, J.-L. Brꢀdas, S. R. Marder, J. Am. Chem.
Soc. 2006, 128, 1812−1817; h) A. Ito, M. Urabe, K. Tanaka, Angew.
Chem. 2003, 115, 951–954; Angew. Chem. Int. Ed. 2003, 42, 921–954;
i) T. Li, G. Tan, D. Shao, J. Li, Z. Zhang, Y. Song, Y. Sui, S. Chen, Y.
Fang, X. Wang, J. Am. Chem. Soc. 2016, 138, 10092–10095; j) A.
Rajca, S. Utamapanya, J. Xu, J. Am. Chem. Soc. 1991, 113, 9235–
9241; k) G. Zhang, S. Li, Y. Jiang, J. Phys. Chem. A 2003, 107, 5573–
5582.
intermolecular
double
head-to-tail
dimerization.
The
straightforward synthetic methodology revealed in this study will
be instrumental for generating new classes of carbon centres
based di- and poly-radical systems[21] and also for the synthesis
of new class of organic redox systems.
[10] Y. Su, X. Wang, Y. Li, Y. Song, Y. Sui, X. Wang, Angew .Chem. 2015,
127, 1654–1657; Angew. Chem. Int. Ed. 2015, 54, 1634–1637.
[11] K. Sato, M. Yano, M. Furuichi, D. Shiomi, T. Takui, K. Abe, K. Itoh, A.
Higuchi, K. Katsuma, Y. Shirota, J. Am. Chem. Soc. 1997, 119, 6607–
6613.
Acknowledgements
This project was funded by intramural funds at Tata Institute of
Fundamental Research (TIFR) Hyderabad, Gopanpally,
Hyderabad-500107, Telangana, India from the Department of
Atomic Energy (DAE), Government of India, India V.C. is
thankful to the Department of Science and Technology, New
Delhi, India, for a National J. C. Bose fellowship. We are grateful
to the reviewers for their critical insights to improve the quality of
the manuscript.
[12] a) K. Kato, A. Osuka, Angew .Chem. 2019, 131, 8634–8638; Angew.
Chem. Int. Ed. 2019, 58, 8546–8550; b) G. Tan, X. Wang, Acc. Chem.
Res. 2017, 50, 1997–2006.
[13] a) D. Rottsch-fer, N. K. T. Ho, B. Neumann, H. -G Stammler, M. v.
Gastel, D. M. Andrada, R. S. Ghadwal, Angew. Chem. 2018, 130,
5940–5944; Angew. Chem. Int. Ed. 2018, 57, 5838–5842; b) D.
Rottschafer, B. Neumann, H.-G. Stammler, D. M. Andrada, R. S.
Ghadwal, Chem. Sci. 2018, 9, 4970–4976.
[14] J. Messelberger, A. Grünwald, P. Pinter, M. M. Hansmann, D. Munz,
Chem. Sci. 2018, 9, 6107−6117.
This article is protected by copyright. All rights reserved.