S. A. Laufer, A. J. Liedtke / Tetrahedron Letters 47 (2006) 7199–7203
R1
7203
R1
Supplementary data
Selected experimental procedures and spectroscopic
data. Supplementary data associated with this article
N
i or ii
N
S
S
N
H
N
H
R3
R3
N
N
27
28
Y
F
References and notes
R4
R1 = e.g. 4-fluoro-, 3-trifluoromethyl-
R3 = alkyl/arylalkyl moiety, preferably -CH3
R4 = (substituted) alkyl/(hetero)arylalkyl/(hetero)aryl moiety
Y = HN, O, S
1. Wagner, G.; Laufer, S. Med. Res. Rev. 2006, 26, 1–62.
2. Kaminska, B. Biochim. Biophys. Acta, Proteins and
Proteomics 2005, 1754, 253–262.
3. Doan, T.; Massarotti, E. J. Clin. Pharmacol. 2005, 45,
751–762.
4. Chen, Z.; Gibson, T. B.; Robinson, F.; Silvestro, L.;
Pearson, G.; Xu, B.; Wright, A.; Vanderbilt, C.; Cobb, M.
H. Chem. Rev. 2001, 101, 2449–2476.
Scheme 2. Nucleophilic aromatic displacement of the fluorine at the
pyridine moiety. Reagents and conditions: (i) Excess of aliphatic or
aromatic primary or secondary amine, neat, reflux or 160 °C; (ii) NaH,
DMF, excess of aliphatic or aromatic alcohol or thioalcohol, 160 °C.
5. Gallagher, T. F.; Seibel, G. L.; Kassis, S.; Laydon, J. T.;
Blumenthal, M. J.; Lee, J. C.; Lee, D.; Boehm, J. C.; Fier-
Thompson, S. M.; Abt, J. W.; Soreson, M. E.; Smietana,
J. M.; Hall, R. F.; Garigipati, R. S.; Bender, P. E.; Erhard,
K. F.; Krog, A. J.; Hofmann, G. A.; Sheldrake, P. L.;
McDonnell, P. C.; Kumar, S.; Young, P. R.; Adams, J. L.
Bioorg. Med. Chem. 1997, 5, 49–64.
6. Liverton, N. J.; Butcher, J. W.; Claiborne, C. F.; Clare-
mon, D. A.; Libby, B. E.; Nguyen, K. T.; Pitzenberger, S.
M.; Selnick, H. G.; Smith, G. R.; Tebben, A.; Vacca, J. P.;
Varga, S. L.; Agarwal, L.; Dancheck, K.; Forsyth, A. J.;
Fletcher, D. S.; Frantz, B.; Hanlon, W. A.; Harper, C. F.;
Hofsess, S. J.; Kostura, M.; Lin, J.; Luell, S.; O’Neill, E.
A.; Orevillo, C. J.; Pang, M.; Parsons, J.; Rolando, A.;
Sahly, Y.; Visco, D. M.; O’Keefe, S. J. J. Med. Chem.
1999, 42, 2180–2190.
7. Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T.
F.; Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M.
J.; Heys, J. R.; Landvatter, S. W. Nature 1994, 372, 739–
746.
8. Young, P. R.; McLaughlin, M. M.; Kumar, S.; Kassis, S.;
Doyle, M. L.; McNulty, D.; Gallagher, T. F.; Fisher, S.;
McDonnell, P. C.; Carr, S. A.; Huddleston, M. J.; Seibel,
G.; Porter, T. G.; Livi, G. P.; Adams, J. L.; Lee, J. C. J.
Biol. Chem. 1997, 272, 12116–12121.
9. Laufer, S. A.; Wagner, G. K.; Kotschenreuther, D. A.;
Albrecht, W. J. Med. Chem. 2003, 46, 3230–3244.
10. Marckwald, W. Chem. Ber. 1892, 25, 2354–2373.
11. Gilchrist, T. L. Heterocyclic Chemistry, 2nd ed.; 1992; p
396.
12. Thompson, J. E.; Cubbon, R. M.; Cummings, R. T.;
Wicker, L. S.; Frankshun, R.; Cunningham, B. R.;
Cameron, P. M.; Meinke, P. T.; Liverton, N.; Weng, Y.;
DeMartino, J. A. Bioorg. Med. Chem. Lett. 2002, 12,
1219–1223.
13. Tamayo, N.; Liao, L.; Goldberg, M.; Powers, D.; Tudor,
Y. Y.; Yu, V.; Wong, L. M.; Henkle, B.; Middleton, S.;
Syed, R.; Harvey, T.; Jang, G.; Hungate, R.; Dominguez,
C. Bioorg. Med. Chem. Lett. 2005, 15, 2409–2413.
14. Laufer, S. A.; Striegel, H.-G.; Wagner, G. K. J. Med.
Chem. 2002, 45, 4695–4705.
was generally high when the pyridine moiety was halo-
gen substituted. The fluoropyridylimidazole compounds
22a–c and 26a–c can be used for further substitutions
with various aromatic, heteroaromatic or aliphatic
amines, alcohols, or thioalcohols to optimize p38 inhibi-
tion activity or to decrease CYP interaction as described
elsewhere9,17,18 (Scheme 2).
3. Conclusions
In summary, two major synthetic achievements were
realized. First, the construction of fundamental etha-
nones 2 was simplified by conducting the reaction at
moderate temperature and with less strictly inert condi-
tions. Reaction time was drastically minimized while
yields were constantly high (84–100%) as compared to
our already reported method that suffered from irregu-
lar yields (5–99 %). The procedure could be applied to
diverse starting compounds (Table 1). Moreover, we
demonstrated that a series of alkyl- or arylalkyl thio-
cyanates are convenient cyclization reagents for the
direct production of 2-(aryl-)alkylsulfanyl imidazoles
in moderate to excellent yields (up to 84%) from several
amino ethanone hydrogen chlorides. Preparation of the
analogous 2-thioimidazoles by former multi-step proce-
dures only afforded, at maximum, 39% yield (last step).
Fluoro- and chloropyridine moieties are compatible
with the process. Only in the bromopyridine derivative
14, was bromine hydrogenolytically cleaved during the
reduction step. The optimized thioimidazole synthesis
also afforded the production of some new derivatives
(22b, 23b, 25, 26a–c) which can be used either as test
candidates or as intermediates for further synthetic
optimizations. In most cases, when applying methylthi-
ocyanate as the cyclization reagent, the desired, almost
pure products could be directly precipitated from
DMF. In using ethyl- or benzylrhodanide, a subsequent
extraction and purification was casually necessary. In
contrast to former thioimidazole syntheses and in
comparison to already available data, this new
cyclization reaction accelerates and improves imidazole
building while increasing total yields.
15. Asinger, F.; Fabian, K.; Vossen, H.; Hentschel, K. Justus
Liebigs Ann. Chem. 1975, 410–414.
16. Ando, T.; Clark, J. H.; Cork, D. G.; Fujita, M.; Kimura,
T. J. Org. Chem. 1987, 52, 681–685.
17. Laufer, S.; Striegel, H.-G.; Neher, K. PCT Int. Appl. WO
2000017192 A1, 20-9-1999, p 53.
18. Laufer, S.; Striegel, H.-G.; Tollmann, K.; Albrecht, W.
Ger. Offen. DE 10238045 A1, 20-8-2002, p 31.