Journal of the American Chemical Society
Page 6 of 10
(13) This specific, partially hydrogenated PAH, is needed to
Riss, A.; Mowbray, D. J.; Etkin, G.; Pedramrazi, Z.; Tsai, H.-Z.;
guarantee the conformational flexibility required for the penultimate
step in the synthesis of kekulene (a double photochemical
cycloisomerization; see ref. 1 for details).
Rubio, A.; Crommie, M. F.; Fischer, F. R. Direct Imaging of Covalent
Bond Structure in Single-Molecule Chemical Reactions. Science 2013,
340, 1434-1437. (e) Rogers, C.; Chen, C.; Pedramrazi, Z.; Omrani, A.
A.; Tsai, H.-Z.; Jung, H. S.; Lin, S.; Crommie, M. F.; Fischer, F. R.
Closing the Nanographene Gap: Surface-Assisted Synthesis of
Peripentacene from 6,6’-Bipentacene Precursors. Angew. Chem. Int.
Ed. 2015, 54, 15143-15146. (f) Kawai, S.; Haapasilta, V.; Lindner, B.
D.; Tahara, K.; Spijker, P.; Buitendijk, J. A.; Pawlak, R.; Meier, T.;
Tobe, Y.; Foster, A. S.; Meyer, E. Thermal Control of Sequential On-
Surface Transformation of a Hydrocarbon Molecule on a Copper
Surface. Nature Commun. 2016, 7, 12711. (g) Hieulle, J.; Carbonell-
Sanromà, E.; Vilas-Varela, M.; García-Lekue, A.; Guitián, E.; Peña,
D.; Pascual, J. I. On-Surface Route for Producing Planar
Nanographenes with Azulene Moieties. Nano Lett. 2018, 18, 418-423.
(h) Fan, Q.; Werner, S.; Tschakert, J.; Ebeling, D.; Schirmeisen, A.;
Hilt, G.; Hieringer, W. Gottfried, W. Precise Monoselective Aromatic
C–H Bond Activation by Chemisorption of Meta-Aryne on a Metal
Surface. J. Am. Chem. Soc. 2018, 140, 7526-7532. (i) Mishra, S.;
Beyer, D.; Eimre, K.; Liu, J.; Berger, R.; Gröning, O.; Pignedoli, C.
A.; Müllen, K.; Fasel, R.; Feng, X.; Ruffieux, P. Synthesis and
Characterization of π-Extended Triangulene. J. Am. Chem. Soc. 2019,
141, 10621-10625. (j) Su, J.; Telychko, M.; Hu, P.; Macam, G.;
Mutombo, P.; Zhang, H.; Bao, Y.; Cheng, F.; Huang, Z.-Q.; Qiu, Z.;
Tan, S. J. R.; Lin, H.; Jelínek, P.; Chuang, F.-C.; Wu, J.; Lu, J.
1
2
3
4
5
6
7
8
(14) (a) Schuler, B.; Collazos, S.; Gross, L.; Meyer, G.; Pérez, D.;
Guitián, E.; Peña, D. From Perylene to
a 22-Ring Aromatic
Hydrocarbon in One-Pot. Angew. Chem. Int. Ed. 2014, 53, 9004–9006.
(b) Rodríguez-Lojo, D.; Peña, D.; Pérez, D.; Guitián, E. Large Phenyl-
Substituted Acenes by Cycloaddition Reactions of the 2,6-
Naphthodiyne Synthon Chem. Commun. 2015, 51, 5418–5420. (c)
Rodríguez-Lojo, D.; Peña, D.; Pérez, D.; Guitián, E. Straightforward
Synthesis of Novel Acene-Based Aryne Precursors, Synlett 2015, 26,
1633–1637. (d) Pozo, I.; Cobas, A.; Peña, D.; Guitián, E.; Pérez, D.
1,7-Naphthodiyne: a New Platform for the Synthesis of Novel,
Sterically Congested PAHs Chem. Commun. 2016, 52, 5534–5537. (e)
Garcia, D., Rodríguez-Pérez, L.; Herranz, M. A.; Peña, D.; Guitián, E.;
Bailey, S.; Al-Galiby, Q.; Noori, M.; Lambert, C. J.; Perez, D.; Martín,
N. A C60-Aryne Building Block: Synthesis of a Hybrid All-Carbon
Nanostructure. Chem. Commun. 2016, 52, 6677–6680. (f) Krüger, J.;
García, F.; Eisenhut, F.; Skidin, D.; Alonso, J. M.; Guitián, E.; Pérez,
D.; Cuniberti, G.; Moresco, F.; Peña, D. Decacene: On-Surface
Generation Angew. Chem. Int. Ed., 2017, 56, 11945–11948. (g)
Schulz, F.; García, F.; Kaiser, K.; Pérez, D.; Guitián, E.; Gross, L.;
Peña, D. Exploring a Route to Cyclic Acenes by On-Surface Synthesis.
Angew. Chem. Int. Ed., 2019, 58, 9038-9042.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) For representative examples by other authors, see: (a) Li, J.;
Zhao, Y.; Lu, J.; Li, G.; Zhang, J.; Zhao, Y.; Sun, X.; Zhang, Q.
Double [4+2] Cycloaddition Reaction to Approach a Large Acene with
Even-Number Linearly Fused Benzene Rings: 6,9,16,19-Tetraphenyl-
1.20,4.5,10.11,14.15-Tetrabenzooctatwistacene. J. Org. Chem. 2015,
80, 109–113. (b) Kumarasinhe, K. G. U. R.; Fronczek, F. R.; Valle, H.
U.; Sygula, A. Bis-corannuleno-anthracene: An Angularly Fused
Atomically
Precise
Bottom-up
Synthesis
of
π-Extended
[5]Triangulene. Sci. Adv. 2019, 5, eaav7717. (k) Sánchez-Grande, A.;
de la Torre, B.; Santos, J.; Cirera, B.; Lauwaet, K.; Chutora, T.;
Edalatmanesh, S.; Mutombo, P.; Rosen, J.; Zbořil, R.; Miranda, R.;
Björk, J.; Jelínek, P.; Martín, N.; Écija, D. On-Surface Synthesis of
Ethynylene-Bridged Anthracene Polymers. Angew. Chem. Int. Ed.
2019, 58, 6559-6563.
(24) (a) Rapenne, G., Grill, L., Zambelli, T., Stojkovic, S.M.,
Ample, F., Moresco, F. and Joachim, C. Launching and landing single
molecular wheelbarrows on a Cu (100) surface. Chem. Phys. Lett.
2006, 431, 219-222. (b) Schuler, B.; Meyer, G.; Peña, D.; Mullins, O.
C.; Gross, L. Unraveling the Molecular Structures of Asphaltenes by
Atomic Force Microscopy J. Am. Chem. Soc. 2015, 137, 9870–9876.
(25) Gross, L.; Mohn, F.; Moll, N.; Meyer, G.; Ebel, R.; Abdel-
Mageed, W. M.; Jaspars, M. Organic Structure Determination Using
Atomic Resolution Scanning Probe Microscopy. Nat. Chem. 2010, 2,
821–825.
(26) Bartels, L.; Meyer, G.; Rieder, K. H. Controlled Vertical
Manipulation of Single CO molecules with the Scanning Tunneling
Microscope: A Route to Chemical Contrast Appl. Phys. Lett. 1997, 71,
213–215.
(27) Gross, L.; Mohn, F. Moll, N.; Schuler, B.; Criado, A.; Guitián,
E.; Peña, D. A. Gourdon, G. Meyer. Bond-Order Discrimination by
Atomic Force Microscopy. Science, 2012, 337, 1326-1329.
(28) Hapala, P.; Kichin, G.; Wagner, C.; Tautz, F. S.; Temirov, R.;
Jelínek, P. Mechanism of High-Resolution STM/AFM Imaging with
Functionalized Tips. Phys. Rev. B 2014, 90, 085421.
Pentacene as
a
Precursor for Barrelene-Tethered Receptors for
Fullerene. Org. Lett. 2016, 18, 3054–3057.
(16) Duong, H. M.; Bendikov, M.; Steiger, D.; Zhang, Q.; Sonmez,
G.; Yamada, J.; Wudl, F. Efficient Synthesis of a Novel, Twistedand
Stable, Electroluminescent “Twistacene”. Org. Lett. 2003, 5, 4433–
4436.
(17) (a) Wolthuis, E.; Cady, W. Reaction of Benzyne with α-
Methylstyrene Angew. Chem. Int. Ed., 1967, 6, 555–556. (b) Harrison,
R.; Heaney, H.; Jablonski, J. M.; Mason, K. G.; Sketchley, J. M. Aryne
Chemistry. Part XVIII. Some Reactions of Tetrahalogenobenzyneswith
Styrene and Substituted Styrenes J. Chem. Soc. C, 1969, 1684–1689.
(18) (a) Dilling, W. L. The Reaction of Benzyne with Styrene
Tetrahedron Lett. 1966, 9, 939–941. (b) Bhojgude, S. S.; Bhunia, A.;
Gonnade, R. G.; Biju, A. T. Efficient Synthesis of 9–
Aryldihydrophenanthrenes by a Cascade Reaction Involving Arynes
and Styrenes, Org. Lett. 2014, 16, 676–679. (c) Bhojgude, S. S.;
Bhunia, A.; Biju, A. T. Employing Arynes in Diels-Alder Reactions
and Transition-Metal-Free Multicomponent Coupling and Arylation
Reactions Acc. Chem. Res. 2016, 49, 1658-1670.
(19) Chen, Z.; Han, X.; Liang, J. H.; Yin, J.; Yu, G. A.; Liu, S. H.
Cycloaddition Reactions of Benzyne with Olefins. Chinese Chem. Lett.
2014, 25, 1535–1539.
(29) Majzik, Z.; Pavliček, N.; Vilas-Varela, M.; Pérez, D.; Moll, N.;
Guitián, E.; Meyer, G.; Peña, D.; Gross, L. Studying an Antiaromatic
Polycyclic Hydrocarbon Adsorbed on Different Surfaces. Nature
Commun. 2018, 9, 1198.
(20) See Supporting Information for details.
(21) In some experiments performed in large scale, trace amounts of
a monophenylated product were detected by mass spectrometry.
(22) Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The
(30) This level of calculations has been found to reproduced
quantitatively key electronic properties of other PAHs, for instance: (a)
Cortizo-Lacalle, D.; Mora-Fuentes, J. P.; Strutynski, K.; Saeki, A.;
Melle-Franco, M.; Mateo-Alonso, A. Monodisperse N-Doped
Graphene Nanoribbons Reaching 7.7 Nanometers in Length. Angew.
Chem. Int. Ed. 2018, 57, 703–708. (b) Belén, M. A.; Cortizo-Lacalle,
D.; Conzalvez, C.; Olano, M.; Atxabal, A.; Sun, X.; Melle-Franco, M.;
Hueso, L. E.; Mateo-Alonso A. An Electron-Conducting Pyrene-Fused
Phenazinothiadiazole. Chem. Commun. 2015, 51, 10754–10757.
(31) (a) Clar, E. The Aromatic Sextet, 1972, Wiley, New York. (b)
Solá, M.; Forty years of Clar’s aromatic π-sextet rule. Front. Chem.
2013, 1, 22.
Chemical Structure of
a Molecule Resolved by Atomic Force
Microscopy. Science 2009, 325, 1110–1114.
(23) (a) Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G.
Atomic Force Microscopy for Molecular Structure Ellucidation.
Angew. Chem. Int. Ed. 2018, 57, 3888–3908 and references cited
therein; (b) Peña, D.; Pavlicek, N.; Schuler, B.; Moll, N.; Pérez, D.;
Guitián, E.; Meyer, G.; Gross L. in On-Surface Synthesis II. Advances
in Atom and Single Molecule Machines (Eds.: D. de Oteyza, C.
Rogero), Springer, Cham, 2018, pp. 209-227. (c) Fatayer, S.; Albrecht,
F.; Zhang, Y.; Urbonas, D.; Peña, D.; Noll, N.; Gross, L. Molecular
structure elucidation with charge-state control. Science 2019, 365, 142-
145. (d) de Oteyza, D. G.; Gorman, P.; Chen, Y.-C.; Wickenburg, S.;
(32) Hapala, P.; Temirov, R.; Tautz, S.; Jeníkel, P. Origin of High-
ACS Paragon Plus Environment