Organometallics
Article
Iridium Complex 4-Ad. Compound 2-Ad (7.0 mg, 8.7 μmol) was
suspended in 0.75 mL of THF-d8 in the glovebox, and NaEt3BH (23
mg, 170 μmol) was added. The mixture was stirred at 25 °C until clear
AUTHOR INFORMATION
Corresponding Author
Notes
■
1
and then transferred to a J-Young NMR tube. H NMR (THF-d8): δ
8.28 (d, 2H, 3JHH = 8.2 Hz); 8.10 (d, 2H, 3JHH = 8.6 Hz); 7.83 (d, 2H,
3
3
3JHH = 7.8 Hz); 7.18 (t, 2H, JHH = 7.8 Hz); 7.14 (t, 1H, JHH = 7.8
Hz); 7.04 (t, 2H, 3JHH = 7.8 Hz); 3.57 (s, 12H); 2.29 (s, 6H); 2.22 (d,
6H, 2JHH = 11.9 Hz); 1.76 (d, 6H, 2JHH = 11.9 Hz); −7.80 (t, 1H, 2JHH
= 3.2 Hz); −12.28 (d, 2H, 2JHH = 3.2 Hz). The resonance at 3.57 ppm
for the adamantyl CH2 groups beta to nitrogen was overlapped with
the residual THF-d8 signal.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (Grant No. CHE-
1057792) for financial support.
Iridium Complex 5-Mes. Compound 1-Mes (25 mg, 31 μmol)
was heated under vacuum (10 mTorr) at 200 °C for 16 h, resulting in
the formation of a brown solid. This solid was recrystallized under
argon by layering a dichloromethane solution with pentane. Yield: 16
REFERENCES
■
(1) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S.
Chem. Rev. 2011, 111, 1761−1779.
(2) (a) Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc.
1979, 101, 7738−7740. (b) Burk, M. J.; Crabtree, R. H.; Parnell, C. P.;
Uriarte, R. J. Organometallics 1984, 3, 816−817.
1
3
mg, 60%. H NMR (C6D6): δ 7.74 (d, 2H, JHH = 8.4 Hz); 7.45 (d,
3
3
3
2H, JHH = 8.0 Hz); 7.26 (t, 1H, JHH = 8.0 Hz); 7.07 (t, 2H, JHH
=
=
7.9 Hz); 6.92 (t, 2H, 3JHH = 7.9 Hz); 6.82 (s, 2H); 6.71 (d, 2H, 3JHH
8.0 Hz); 6.50 (s, 2H); 4.35 (s, 2H); 2.31 (s, 6H); 2.04 (s, 6H); 1.88 (s,
6H). The iridium-bound hydride was not observed in C6D6. 1H NMR
(CD2Cl2): δ 8.18 (d, 2H, 3JHH = 8.4 Hz); 7.68 (d, 2H, 3JHH = 8.0 Hz);
(3) (a) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem.
Commun. 1980, 1243−1244. (b) Baudry, D.; Ephritikhine, M.; Felkin,
H. J. Chem. Soc., Chem. Commun. 1982, 606−607. (c) Baudry, D.;
Ephritikhine, M.; Felkin, H.; Holmes-Smith, R. J. Chem. Soc., Chem.
Commun. 1983, 788−789.
3
3
7.47 (t, 2H, JHH = 7.6 Hz); 7.34 (t, 1H, JHH = 8.0 Hz); 7.31 (t, 2H,
3JHH = 7.7 Hz); 7.07 (s, 2H); 7.05 (s, 2H); 6.98 (d, 2H, JHH = 8.0
3
Hz); 2.39 (s, 6H); 2.18 (s, 6H); 1.97 (s, 6H); −22.68 (s, 1H). 13C
NMR (CD2Cl2): δ 188.76; 145.80; 140.29; 137.62; 137.39; 136.16;
132.80; 132.62; 129.73; 129.52; 124.05; 123.37; 121.94; 111.47;
111.16; 108.42; 21.34; 18.17; 18.04. The iridium-bound Caryl was not
observed, possibly due to broadening caused by exchange of the
CD2Cl2 ligand. Anal. Calcd for C39H36Cl3IrN4: C, 54.51; H, 4.22; N,
6.52. Found: C, 56.90; H, 4.52; N, 6.95. Repeated analyses gave similar
results, which may result from partial loss of dichloromethane upon
storage under vacuum.
(4) Gupta, M.; Hagen, C.; Flesher, R. J.; Kaska, W. C.; Jensen, C. M.
Chem. Commun. 1996, 2083−2084.
(5) (a) Gottker-Schnetmann, I.; White, P.; Brookhart, M. J. Am.
̈
Chem. Soc. 2004, 126, 1804−1811. (b) Morales-Morales, D.; Redon,
R.; Yung, C.; Jensen, C. M. Inorg. Chim. Acta 2004, 357, 2953−2956.
(c) Kuklin, S. A.; Sheloumov, A. M.; Dolgushin, F. M.; Ezernitskaya,
M. G.; Peregudov, A. S.; Petrovskii, P. V.; Koridze, A. A.
Organometallics 2006, 25, 5466−5476. (d) Kundu, S.; Choliy, Y.;
Zhuo, G.; Ahuja, R.; Emge, T. J.; Warmuth, R.; Brookhart, M.; Krogh-
Jespersen, K.; Goldman, A. S. Organometallics 2009, 28, 5432−5444.
(6) (a) Liu, F. C.; Goldman, A. S. Chem. Commun. 1999, 655−656.
(b) Adams, J. J.; Arulsamy, N.; Roddick, D. M. Organometallics 2012,
31, 1439−1447.
X-ray Crystallography, General Methods. Structure determi-
nations were performed on an Oxford Diffraction Gemini-R
diffractometer, using Mo Kα radiation (1-CF3Mes) or Cu Kα
radiation (5-Mes). Single crystals were mounted on Hampton
Research Cryoloops using Paratone-N oil. Unit cell determination,
data collection and reduction, and empirical absorption correction
were performed using the CrysAlisPro software package.25 Direct
methods structure solution was accomplished using SIR92,26 and full-
matrix least-squares refinement was carried out using CRYSTALS.27
All non-hydrogen atoms were refined anisotropically. Unless otherwise
noted, hydrogen atoms were placed in calculated positions, and their
positions were initially refined using distance and angle restraints. All
hydrogen positions were fixed in place for the final refinement cycles.
X-ray Structure Determination of 1-CF3Mes. X-ray quality
crystals of 1-CF3Mes were grown by layering a dichloromethane
solution with pentane. Minor conformational disorder was present for
the CF3 group, but accounting for this disorder did not improve the
agreement. Highly disordered solvent was present; correction for this
residual density was performed using the option SQUEEZE in the
program package PLATON.28 A total of 83 electrons per unit cell were
removed, from a total potentially solvent-accessible void of 568.0 Å3.
The iridium-bound hydride was not located in the difference map.
X-ray Structure Determination of 5-Mes. X-ray quality crystals
of 5-Mes were grown by layering a dichloromethane solution with
pentane. Highly disordered solvent was present; correction for this
residual density was performed using the option SQUEEZE in the
program package PLATON.28 A total of 104 electrons per unit cell
were removed, from a total potentially solvent-accessible void of 357.3
Å3.
(7) Gruver, B. C.; Adams, J. J.; Warner, S. J.; Arulsamy, N.; Roddick,
D. M. Organometallics 2011, 30, 5133−5140.
(8) (a) Chianese, A. R.; Mo, A.; Lampland, N. L.; Swartz, R. L.;
Bremer, P. T. Organometallics 2010, 29, 3019−3026. (b) Chianese, A.
R.; Shaner, S. E.; Tendler, J. A.; Pudalov, D. M.; Shopov, D. Y.; Kim,
D.; Rogers, S. L.; Mo, A. Organometallics 2012, 31, 7359−7367.
(9) (a) Bauer, E. B.; Andavan, G. T. S.; Hollis, T. K.; Rubio, R. J.;
Cho, J.; Kuchenbeiser, G. R.; Helgert, T. R.; Letko, C. S.; Tham, F. S.
Org. Lett. 2008, 10, 1175−1178. (b) Raynal, M.; Cazin, C. S. J.; Vallee,
C.; Olivier-Bourbigou, H.; Braunstein, P. Chem. Commun. 2008,
3983−3985. (c) Raynal, M.; Pattacini, R.; Cazin, C. S. J.; Vallee, C.;
Olivier-Bourbigou, H.; Braunstein, P. Organometallics 2009, 28, 4028−
4047. (d) Schultz, K. M.; Goldberg, K. I.; Gusev, D. G.; Heinekey, D.
M. Organometallics 2011, 30, 1429−1437. (e) Zuo, W. W.; Braunstein,
P. Organometallics 2012, 31, 2606−2615. (f) Zuo, W. W.; Braunstein,
P. Dalton Trans. 2012, 41, 636−643.
(10) Abbreviations: cod = 1,5-cyclooctadiene, DPEPhos = bis(2-
diphenylphosphinophenyl)ether; dba = dibenzylideneacetone.
(11) Afeefy, H. Y.; Liebman, J. F.; Stein, S. E. Neutral
Thermochemical Data. In NIST Chemistry WebBook, NIST Standard
Reference Database Number 69; Linstrom, P. J., Mallard, W. G., Eds.;
National Institute of Standards and Technology: Gaithersburg, MD,
(12) Xu, W. W.; Rosini, G. P.; Gupta, M.; Jensen, C. M.; Kaska, W.
C.; Krogh-Jespersen, K.; Goldman, A. S. Chem. Commun. 1997, 2273−
2274.
ASSOCIATED CONTENT
* Supporting Information
■
(13) Gottker-Schnetmann, I.; Brookhart, M. J. Am. Chem. Soc. 2004,
̈
S
126, 9330−9338.
CIF file giving crystallographic data for complexes 1-CF3Mes
and 5-Mes. Complete experimental procedures for ligand
synthesis and characterization and images of NMR spectra for
all new compounds. This material is available free of charge via
(14) Krogh-Jespersen, K.; Czerw, M.; Summa, N.; Renkema, K. B.;
Achord, P. D.; Goldman, A. S. J. Am. Chem. Soc. 2002, 124, 11404−
11416.
(15) Zhu, K. M.; Achord, P. D.; Zhang, X. W.; Krogh-Jespersen, K.;
Goldman, A. S. J. Am. Chem. Soc. 2004, 126, 13044−13053.
G
dx.doi.org/10.1021/om4006577 | Organometallics XXXX, XXX, XXX−XXX