10.1002/chem.201603758
Chemistry - A European Journal
FULL PAPER
[2]
Pd catalyzed reactions: a) A review: S. Ma, Eur. J. Org. Chem. 2004,
1175-1183. b) T. Mandai, Handbook of Organopalladium Chemistry for
Organic Synthesis 2002, 2, 1827-1832. c) Y. Yang, K. J. Szabó, J. Org.
Chem. 2016, 81, 250-255. d) Q.-H. Li, J.-Y. Jeng, H.-M. Gau, Eur. J.
Org. Chem. 2014, 7916-7923. e) Y. Wang, W. Zhang, S. Ma, J. Am.
Chem. Soc. 2013, 135, 11517-11520. f) From bromodienes: Z. Wu, F.
Berhal, M. Zhao, Z. Zhang, T. Ayad, V. Ratovelomanana-Vidal, ACS
Catal. 2014, 4, 44-48. g) D. Girard, S. Broussous, O. Provot, J. D. Brion,
M. Alami, Tetrahedron Lett. 2007, 48, 6022–6026. h) G. A. Molander, E.
M. Sommers, S. R. Baker, J. Org. Chem. 2006, 71, 1563-1568. i) M.
Yoshida, T. Okada, K. Shishido, Tetrahedron 2007, 63, 6996-6998. j) M.
Yoshida, T. Gotou, M. Ihara, Tetrahedron Lett. 2004, 45, 5573-5576.
Cu-catalyzed reactions: a) H. Li, D. Grassi, L. Guénée, T. Bürgi, A.
Alexakis, Chem. Eur. J. 2014, 20, 16694-16706. b) H. Li, D. Müller, L.
Guénée, A. Alexakis, Org. Lett. 2012, 14, 5880-5883. c) M. R. Uehling,
S. T. Marionni, G. Lalic, Org. Lett. 2012, 14, 362-365. d) H. Ohmiya, U.
Yokobori, Y. Makida, M. Sawamura, Org. Lett., 2011, 13, 6312-6315 e)
C. K. Hazra, M. Oestreich, Org. Lett. 2012, 14, 4010-4013. f) U.
Yokobori, H. Ohmiya, M. Sawamura, Organometallics 2012, 31, 7909-
7913. g) Coupling involving C-Si bond formation: D. J. Vyas, C. K.
Hazra, M. Oestreich, Org. Lett., 2011, 13, 4462-4465. h) J. Li, W. Kong,
C. Fu, S. Ma, J. Org. Chem. 2009, 74, 5104-5106. i) H. Ito, Y. Sasaki,
M. Sawamura, J. Am. Chem. Soc. 2008, 130, 15774-15775.
Substitution reactions involving stoichiometric amounts of cuprates can
be found in ref. [1].
work on a related system afforded a calculated low activation
energy.[10]
To sum up, stereochemical, titration and kinetic experiments,
along with computational data lead us to propose the reaction
pathway shown in Scheme 9. Precatalyst is reduced to the
active alkyl-Ni(I) species by the nucleophile, which dimerizes to
a diamagnetic complex. The subsequent extremely fast bromide
abstraction is followed by rate-determining radical coordination
to dimeric Ni(I) species, which constitutes the catalyst resting
state. This process also fixes the observed regioselectivity. Fast
reductive elimination affords the coupling product, with the
tentative participation of previously formed (alkyl)Ni(II)Br
intermediate. Two different Ni(I) complexes are formed: the
active alkyl-Ni(I) and Ni(I)Br, which is converted into the active
species by transmetalation, and restarts the cycle.
[3]
Conclusions
In conclusion, we have developed an unprecedented Ni-
catalyzed cross-coupling reaction of propargyl halides leading to
allenes using alkylzinc reagents as nucleophiles. The reaction
shows broad scope and functional group compatibility, and it is
complementary with previously reported work. The reaction
mechanism has been studied by means of experimental and
computational tools. The reaction shows first order in the
electrophile, zero order in the nucleophile, and half order with
respect to the catalyst. It seems to be catalyzed by Ni(I)
complexes and to involve propargyl radicals whose coordination
to Ni(I) determines the regiochemical outcome of the reaction. In
contrast to other related reactions, nucleophile concentration is
[4]
Rh-catalyzed reactions: a) J. Ruchti, E. M. Carreira, Org. Lett. 2016, 18,
2174-2176. b) H. Ohmiya, H. Ito, M. Sawamura, Org. Lett. 2009,11,
5618-5620. c) S. Wu, X. Huang, W. Wu, P. Li, C. Fu, S. Ma, Nat.
Commun. 2015, 6, 7946-7954. c) T. Miura, M. Shimada, S.-Y. Ku, T.
Tamai, M. Murakami, Angew. Chem. Int. Ed. 2007, 46, 7101-7103. d) T.
Miura, M. Shimada, P. de Mendoza, C. Deutsch, N. Krause, M.
Murakami, J. Org. Chem. 2009, 74, 6050-6054.
[5]
[6]
[7]
[8]
a) S. N. Kessler, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2016, 55, 3734-
3738. b) A. Fürstner, M. Méndez, Angew. Chem. Int. Ed. 2003, 42,
5355-5357.
a) Q.-H. Li, J.-W. Liao, Y.-L. Huang, R.-T. Chiang, H.-M. Gau, Org.
Biomol. Chem. 2014, 12, 7634-7642. b) Q.-H. Li, H.-M. Gau, Synlett
2012, 23, 747-750.
kinetically irrelevant, pointing to
a
fast irreversible
transmetalation step. Data support the formation of a Ni(I) dimer
as the catalyst resting state. The involvement of radicals opens
the possibility to develop new cascade processes, and the key
coordination the former to Ni suggests that enantioselective
processes may be discovered for this kind of systems.
Stereoselective synthesis of allenes involving organometallic reagents:
A. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115,
9587-9652.
a) M. Guisán-Ceinos, R. Soler-Yanes, D. Collado-Sanz, V. B. Phapale,
E. Buñuel, D. J. Cárdenas, Chem. Eur. J. 2013, 19, 8405-8410. b) V. B.
Phapale, E. Buñuel, M. García-Iglesias, D. J. Cárdenas, Angew. Chem.
Int. Ed. 2007, 46, 8790-8795. c) R. Soler-Yanes, M. Guisán-Ceinos, E.
Buñuel, D. J. Cárdenas, Eur. J.Org. Chem. 2014, 6625-6629. d) V. B.
Phapale, D. J. Cárdenas, Chem. Soc. Rev. 2009, 38, 1598-1607.
V. B. Phapale, M. Guisán-Ceinos, E. Buñuel, D. J. Cárdenas, Chem.
Eur. J. 2009, 15, 12681-12688.
Acknowledgements
This work was supported by the MINECO (grant CTQ2013-
42806-R, and a fellowship to R. S.-Y.). We thank the UAM for a
fellowship to M. G.-C. Dr. F. Tato and D. Collado-Sanz are
gratefully acknowledged for helpful suggestions. We thank the
Centro de Computación Científica-UAM for computation time
and Gema Caballero for some experiments.
[9]
[10] a) O. Vechorkin, X. Hu, Angew. Chem. Int. Ed. 2009, 48, 2937-2940. b)
O. Vechorkin, A. Godinat, R. Scopelliti, X. Hu, Angew. Chem. Int. Ed.
2011, 50, 11777-11781. c) P. M. P. Garcia, T. Di Franco, A. Epenoy, R.
Scopelliti, X. Hu, ACS Catal. 2016, 6, 258-261. d) J. Breitenfeld, O.
Vechorkin, C. Corminboeuf, R. Scopelliti, X. Hu, Organometallics 2010,
29, 3686-3689. e) X. Hu, Chem. Sci. 2011, 2, 1867-886.
Keywords: Nickel • Cross-coupling • Allenes • Reaction
mechanisms • Density functional calculations
[11] a) S. W. Smith, G. C. Fu, Angew. Chem. Int. Ed. 2008, 47, 9334-9336.
b) S. W. Smith, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 12645-12647.
c) A. J. Oelke, J. Sun, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 2966-
2969.
[1]
a) R. K. Neff, D. E. Frantz, ACS Catal. 2014, 4, 519-528. b) S. Yu, S.
Ma, Chem. Commun. 2011, 47, 5384-5418. c) J. Ye, S. Ma, Org. Chem.
Front. 2014, 1, 1210-1224. d) A. Hoffmann-Röder, N. Krause, Angew.
Chem. Int. Ed. 2004, 43, 1196-1216. e) K. M. Brummond, J. E.
DeForrest, Synthesis 2007,795-818. f) M. Ogasawara, Tetrahedron:
Asymmetry 2009, 20, 259-271.
[12] N. D. Schley, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 16588-593.
[13] Addition of just 1.5 equiv of organozinc halide 8 in the reaction with 1j
afforded a slightly lower yield compared to the use of the standard 3
equiv (76% and 86%, respectively).
[14] Reactions involving CF3(C6H4)-substituted propargyl bromide took
longer to complete and were performed overnight.
This article is protected by copyright. All rights reserved.