C O M M U N I C A T I O N S
from specific interactions with cellular and mitochondrial mem-
branes, we tested nitroxide conjugate 5c, which is similarly
lipophilic (cLogP 5.5) but does not have a complete targeting
moiety. We found that 5c was ineffective in protecting MECs
against ActD-induced apoptosis (Figure 3B,C). Thus, the GS-
peptidyl targeting structure is required for anti-apoptotic activity
of nitroxide conjugates. Since the reduction of 5a and 5b could
also cause inhibition of mitochondrial oxidative phosphorylation,
we tested whether ATP levels were changed in cells treated with
these compounds. At concentrations at which anti-apoptotic effects
were maximal (5a, 10 µM, Figure 3E), nitroxide conjugates did
not cause significant changes in the cellular ATP level (Figure 3F).
Thus, synthetic GS-peptidyl conjugates migrate into cells and
mitochondria, where they are reduced (likely by electron-transport-
ing proteins) and exert protection against apoptosis. Previously, spin
trapping nitrones have demonstrated promise in aging research.17
Our radical scavenger delivery approach is based on the use of
specific GS-derived mitochondria targeting sequences11 and offers
similar potential for future anti-apoptotic interventions.6b,c,18
Acknowledgment. We thank DARPA (W81XWH-05-2-0026)
for financial support.
Figure 2. EPR-based analysis of integration and reduction of nitroxide
GS-peptidyl conjugates in MECs. Cells (10 million/mL) were incubated
with 10 µM of 4-AT or 5a for 15 min. Recovered nitroxide radicals in
whole cells, mitochondria, or cytosol fractions were resuspended in PBS
in the presence or absence of 2 mM K3Fe(CN)6 (JEOL-RE1X EPR
spectrometer under the following conditions: 3350 G center field; 25 G
scan range; 0.79 G field modulation, 20 mW microwave power; 0.1 s time
constant; 4 min scan time). (A) Representative EPR spectra of 5a in different
fractions of MECs in the presence of K3Fe(CN)6. (B) Assessment of
integrated nitroxides (n ) 3); *p < 0.01 vs K3Fe(CN)6; #p < 0.01 vs 5a
under the same conditions.
Supporting Information Available: Experimental procedures, 1H
and 13C spectra, and procedures for biological assays. This material is
References
(1) (a) Mattson, M. P.; Kroemer, G. Trends Mol. Med. 2003, 9, 196. (b)
Blackstone, E.; Morrison, M.; Roth, M. B. Science 2005, 308, 518. (c)
Schriner, S. E.; Linford, N. J.; Martin, G. M.; Treuting, P.; Ogburn, C.
E.; Emond, M.; Coskun, P. E.; Ladiges, W.; Wolf, N.; Van Remmen, H.;
Wallace, D. C.; Rabinovitch, P. S. Science 2005, 308, 1909.
(2) Balaban, R. S.; Nemoto, S.; Finkel, T. Cell 2005, 120, 483.
(3) (a) Iverson, S.; Orrenius, S. Arch. Biochem. Biophys. 2004, 423, 37. (b)
Nakagawa, Y. Ann. N.Y. Acad. Sci. 2004, 1011, 177.
(4) (a) Samuni, A. M.; Goldstein, S.; Russo, A.; Mitchell, J. B.; Krishna, M.
C.; Neta, P. J. Am. Chem. Soc. 2002, 124, 8719. (b) Nitrones: Becker,
D. A.; Ley, J. J.; Echegoyen, L.; Alvarado, R. J. Am. Chem. Soc. 2002,
124, 4678.
(5) Krishna, M. C.; Samuni, A. M.; Taira, J.; Goldstein, S.; Mitchell, J. B.;
Russo, A. J. Biol. Chem. 1996, 271, 26018.
(6) (a) Samuni, A. M.; DeGraff, W.; Cook, J. A.; Krishna, M. C.; Russo, A.;
Mitchell, J. B. Free Rad. Biol. Med. 2004, 37, 1648. (b) James, A. M.;
Cocheme, H. M.; Murphy, M. P. Mech. Aging DeV. 2005, 126, 982. (c)
Kujoth, G. C.; Hiona, A.; Pugh, T. D.; Someya, S.; Panzer, K.;
Wohlgemuth, S. E.; Hofer, T.; Seo, A. Y.; Sullivan, R.; Jobling, W. A.;
Morrow, J. D.; Van Remmen, H.; Sedivy, J. M.; Yamasoba, T.; Tanokura,
M.; Weindruch, R.; Leeuwenburgh, C.; Prolla, T. A. Science 2005, 309,
481.
(7) (a) Krishna, M. C.; Russo, A.; Mitchell, J. B.; Goldstein, S.; Dafni, H.;
Samuni, A. M. J. Biol. Chem. 1996, 271, 26026. (b) Borisenko, G. G.;
Martin, I.; Zhao, Q.; Amoscato, A. A.; Kagan, V. E. J. Am. Chem. Soc.
2004, 126, 9221.
(8) Wipf, P.; Li, W.; Adeyeye, C. M.; Rusnak, J. M.; Lazo, J. Bioorg. Med.
Chem. 1996, 4, 1585.
(9) Cell-permeable peptide antioxidants that target the inner mitochondrial
membrane: (a) Zhao, K.; Zhao, G.-M.; Wu, D.; Soong, Y.; Birk, A. V.;
Schiller, P. W.; Szeto, H. H. J. Biol. Chem. 2004, 279, 34682. (b) Kunze,
B.; Jansen, R.; Hoefle, G.; Reichenbach, H. J. Antibiot. 2004, 57, 151.
(10) (a) Xiao, J.; Weisblum, B.; Wipf, P. J. Am. Chem. Soc. 2005, 127, 5742.
(b) Wipf, P.; Henninger, T. C.; Geib, S. J. J. Org. Chem. 1998, 63, 6088.
(11) Jelokhani-Niaraki, M.; Kondejewski, L. H.; Farmer, S. W.; Hancock, R.
E. W.; Kay, C. M.; Hodges, R. S. Biochem. J. 2000, 349, 747.
(12) (a) Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003,
125, 761. (b) Wipf, P.; Xiao, J. Org. Lett. 2005, 7, 103.
(13) Wipf, P.; Kendall, C. Top. Organomet. Chem. 2004, 8, 1.
(14) Edmonds, M. K.; Abell, A. D. J. Org. Chem. 2001, 66, 3747.
(15) Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59,
1238.
(16) Tamaki, M.; Akabori, S.; Muramatsu, I. Bull. Chem. Soc. Jpn. 1993, 66,
3113.
(17) Floyd, R. A.; Hensley, K.; Forster, M. J.; Kelleher-Andersson, J. A.; Wood,
P. L. Mech. Aging DeV. 2002, 123, 1021.
(18) Previous studies have demonstrated the potential usefulness of nitroxide
radicals in protecting cells against apoptosis, whereby negatively charged
mitochondria were targeted by a positively charged agent; however, this
resulted in a relatively narrow therapeutic window: (a) Dessolin, J.;
Schuler, M.; Quinart, A.; De Giorgi, F.; Ghosez, L.; Ichas, F. Eur. J.
Pharmacol. 2002, 447, 155. (b) Dhanasekaran, A.; Kotamraju, S.;
Kalivendi, S. V.; Matsunaga, T.; Shang, T.; Keszler, A.; Joseph, J.;
Kalyanaraman, B. J. Biol. Chem. 2004, 279, 37575.
Figure 3. Effect of nitroxide conjugates on ActD-induced apoptosis in
MECs. Cells were pretreated with 10 µM 4-AT, 5a, 5b, or 5c for 1 h, then
incubated with ActD (100 ng/mL). (A) Superoxide production: mean
fluorescence intensity from 10 000 cells. (B) PS externalization. (C) Cas-
pase-3 activation. (D) DNA fragmentation. (E) PS externalization at different
concentrations of 5a. (F) ATP levels in MECs in the presence or absence
of 5a or 2-deoxyglucose (2-DG), as a positive control. Data are means (SD
(n ) 3), #p < 0.01 vs control, *p < 0.01 vs ActD-treated cells.
cells (Figure 3B), caspase activation (Figure 3C), and DNA
fragmentation (Figure 3D). 5a (Figure 3) and 5b reduced the number
of annexin V-positive cells and prevented caspase-3 activation and
DNA fragmentation. In contrast, 4-AT afforded no protection.
Protective effects of 5a and 5b were achieved at relatively low
10 µM concentrations. At higher concentrations, both 5a (Figure
3E) and 5b were either less protective or exerted cytotoxicity. Both
5a and 5b are very hydrophobic compounds with a cLogP of 6.4
and 4.5, respectively. To determine whether their protective anti-
apoptotic effects resulted from unspecific lipophilicity rather than
JA053679L
9
J. AM. CHEM. SOC. VOL. 127, NO. 36, 2005 12461