(d), 128.4 (2 × d), 127.4 (2 × d), 126.6 (d), 115.2 (t), 93.5 (s),
(s), 128.7 (2 × d), 128.8 (2 × d), 127.7 (2 × d), 127.6 (2 × d),
53.4 (t), 52.7 (t), 35.8 (d) and 17.3 (q).
127.0 (d), 127.1 (d), 86.5 (s), 86.3 (s), 52.6 (d), 52.5 (d), 52.2 (d),
52.0 (d), 44.1 (t), 44.0 (t), 40.6 (t), 40.4 (t), 22.9 (t), 22.8 (t), 15.2
(q) and 14.8 (q); m/z (EI) for mixture 319 (100%, Mϩ), 284 (41),
249 (100), 214 (30) and 105 (88).
(S)-(N-ꢁ-Methylbenzyl)-N-but-3-enyltrichloroacetamide 25c.
Yield 67%, [α]D22 Ϫ20 (Found: C, 52.1; H, 4.9; N, 4.35; Cl, 33.0.
C10H16Cl3NO requires C, 52.4; H, 5.0; N, 4.4; Cl, 33.2%); νmax
(CH2Cl2)/cmϪ1 1673; δH(200 MHz; CDCl3) 7.23 (5 H, m, Ar),
N-tert-Butyl-3,3-dichloro-4-chloromethylpiperidin-2-one 27d.
Yield 99%, as a clear oil (Found: C, 44.05; H, 5.9; N, 5.05; Cl,
39.2. C10H16Cl3NO requires C, 44.1; H, 5.9; N, 5.1; Cl, 39.0%);
νmax (CH2Cl2)/cmϪ1 1674, δH(250 MHz; CDCl3) 4.14 (1 H, dd,
J 11.2 and 4.9, CHHCl), 3.52 (1 H, m, CHHN), 3.52 (1 H,
dd, J 11.2 and 10.1, CHHCl), 3.27 (1 H, m, CHHN), 2.63 (1 H,
m, CH), 2.35 (1 H, m, CHH), 1.75–1.95 (1 H, m, CHH) and
1.43 (9H, s, t-Bu); δC(62.9 MHz; CDCl3) 163.4 (s), 87.2 (s), 59.4
(s), 52.2 (d), 44.5 (t), 43.4 (t), 27.9 (3 × q) and 23.8 (t).
5.73 (1 H, m, CH᎐CH ), 5.48 (1 H, m, CH), 4.82 (2 H, m,
᎐
2
CH᎐CH ), 3.25 (1 H, m, NCHH), 2.74 (1 H, m, NCHH), 2.22
᎐
2
(2 H, m, CH2) and 1.60 (3H, d, J 7.0, Me); δC(50.3 MHz;
CDCl3) 161.2 (s), 140.0 (s), 135.7 (d), 129.6 (2 × d), 128.7
(2 × d), 127.9 (d), 117.7 (t), 95.3 (s), 57.6 (d), 47.2 (t), 33.1 (t)
and 18.7 (q); m/z (EI) 319 (4%, Mϩ), 284 (97), 214 (100) and 104
(10).
N-tert-Butyl-N-but-3-enyltrichloroacetamide 25d. Yield 62%,
as a clear oil (Found: C, 44.12; H, 6.0; N, 5.15; Cl, 38.6.
C10H16Cl3NO requires C, 44.0; H, 5.9; N, 5.5; Cl, 39.0%); νmax
(CH2Cl2)/cmϪ1 1684; δH(250 MHz; CDCl3) 5.42–5.25 (1 H, m,
References
1 J. Iqbal, B. Bhatia and N. K. Nayyar, Chem Rev., 1994, 94, 519.
2 (a) F. O. H. Pirrung, H. Hiemstra and W. N. Speckamp, Tetrahedron,
1994, 50, 12415; (b) M. A. Rachita and G. A. Slough, Tetrahedron
Lett., 1993, 43, 6821; (c) G. A. Slough, Tetrahedron Lett., 1993, 43,
6825; (d) T. K. Hayes, R. Villani and S. M. Weinreb, J. Am. Chem.
Soc., 1988, 110, 5533; (e) J. C. Phelps, D. E. Bergbreiter, G. M. Lee,
R. Villani and S. M. Weinreb, Tetrahedron Lett., 1989, 30, 3915;
( f ) G. M. Lee and S. M. Weinreb, J. Org. Chem., 1990, 55, 1281;
(g) H. Nagashima, H. Wakamatsu, N. Ozaki, M. Ishii, M.
Watanabe, T. Tajima and K. Itoh, J. Org. Chem., 1992, 57, 1682;
(h) H. Nagashima, K. Ara, H. Wakamatsu and K. Itoh, J. Chem.
Soc., Chem. Commun., 1985, 518.
CH᎐CH ), 4.80–4.60 (2 H, m, CH᎐CH ), 3.41 (2 H, m, CH ),
᎐
᎐
2
2
2
2.15 (2 H, m, CH2) and 1.23 (9H, s, t-Bu); δC(62.9 MHz; CDCl3)
161.2 (s), 133.2 (d), 116.9 (t), 95.1 (s), 59.8 (s), 45.7 (t), 35.4 (t)
and 27.8 (3 × q).
N-Benzyl-3,3-dichloro-4-chloromethylpiperidin-2-one
27a.
Yield 90%, as a clear oil (Found: C, 51.0; H, 4.5; N, 4.6; Cl,
34.4. C13H14Cl3NO requires C, 50.9; H, 4.6; N, 4.6; Cl, 34.7%);
νmax (CH2Cl2)/cmϪ1 1676; δH(250 MHz; CDCl3) 7.40–7.20 (5 H,
m, Ar), 4.80 (1 H, d, J 14.5, CHHPh), 4.45 (1 H, d, J 14.5,
CHHPh), 4.16 (1 H, dd, J 11.1 and 2.8, CHHCl), 3.58 (1 H, dd,
J 11.1 and 10.1, CHHCl), 3.33 (2 H, m, NCH2), 2.75 (1 H, m,
CH), 2.36 (1 H, ddd, J 14.2, 3.6 and 3.0, CHH) and 1.94 (1 H,
ddd, J 14.2, 12.3 and 9.0, CHH); δC(62.9 MHz; CDCl3) 165.7
(s), 134.5 (s), 129.1 (2 × d), 128.4 (2 × d), 128.2 (d), 84.3 (s),
51.6 (d), 47.9 (t), 47.3 (t) and 41.1 (t); m/z (EI) 305 (3%, Mϩ),
270 (3), 235 (14), 201 (100) and 90 (6).
3 G. M. Lee, M. Parvez and S. M. Weinreb, Tetrahedron, 1988, 44,
4671.
4 (a) J. H. Udding, K. C. J. M. Tuijp, M. N. A. Vanzanden,
H. Hiemstra and W. N. Speckamp, J. Org. Chem., 1994, 59, 1993;
(b) J. H. Udding, K. C. J. M. Tuijp, M. N. A. Vanzanden, H.
Hiemstra and W. N. Speckamp, Tetrahedron, 1994, 50, 1907;
(c) N. Baldovini, M.-P. Bertrand, A. Carrière, R. Nougier and J. M.
Plancher, J. Org. Chem., 1996, 61, 3205; (d) S. Iwamatsu, K.
Matsubara and H. Nagashima, J. Org. Chem., 1999, 64, 9625.
5 (a) L. Forti, F. Ghelfi and U. M. Pagnoni, Tetrahedron Lett., 1996,
37, 2077; (b) L. Forti, F. Ghelfi, E. Libertini, U. M. Pagnoni and
E. Soragni, Tetrahedron, 1997, 53, 17761; (c) F. Ghelfi, F. Bellesia,
L. Forti, G. Ghirardini, R. Grandi, E. Libertini, M. C. Monte-
maggi, U. M. Pagnoni, A. Pinetti, L. DeBuyck and A. F. Parsons,
Tetrahedron, 1999, 55, 1687.
6 F. De Campo, D Lastécouères and J.-B. Verlhac, Chem. Commun.,
1998, 2117.
7 H. Nagashima, N. Ozaki, M. Ishii, K. Seki, M. Washiyama and
K. Itoh, J. Org. Chem., 1993, 58, 464.
8 S.-I. Iwamatsu, H. Kondo, K. Matsubara and H. Nagashima,
Tetrahedron, 1999, 55, 1687.
9 (a) A. J. Clark, D. J. Duncalf, R. P. Filik, D. M. Haddleton, G. H.
Thomas and H. Wongtap, Tetrahedron Lett., 1999, 40, 3807; (b) A. J.
Clark, R. P. Filik and G. H. Thomas, Tetrahedron Lett., 1999, 40,
4885; (c) A. J. Clark, R. P. Filik, D. M. Haddleton, A. Radique,
C. J. Sanders, G. H. Thomas and M. E. Smith, J. Org. Chem., 1999,
64, 8954.
10 (a) D. M. Haddleton, D. J. Duncalf, A. J. Clark, M. C. Crossman
and D. Kukulj, New J. Chem., 1998, 315; (b) D. M. Haddleton, D. J.
Duncalf, D. Kukulj, M. C. Crossman, S. G. Jackson, S. A. F. Bon,
A. J. Clark and A. J. Shooter, Eur. J. Inorg. Chem., 1998, 1799;
(c) A. J. Clark, M. C. Crossman, D. J. Duncalf, D. M. Haddleton,
S. R. Morsley and A. J. Shooter, Chem Commun., 1997, 1734;
(d) D. M. Haddleton, A. J. Clark, D. J. Duncalf, A. M. Heming,
D. Kukulj and A. J. Shooter, J. Chem. Soc., Dalton Trans., 1998,
381; (e) D. M. Haddleton, D. J. Duncalf, D. Kukulj, A. J. Shooter
and A. J. Clark, J. Mater. Chem., 1998, 1525.
11 (a) K. D. Karlin and J. Zubieta, Copper Coordination Chemistry;
Biochemical and Inorganic Perspectives, Adenine Press, 1983; (b)
P. V. Bernhardt, J. Am. Chem. Soc., 1997, 119, 771.
12 (a) J. Xia and K. Matyjaszewski, Macromolecules, 1997, 30, 7697;
(b) J. Xia, S. G. Gaynor and K. Matyjaszewski, Macromolecules,
1998, 31, 5958.
13 M. Ciampolini and N. Nardi, Inorg. Chem., 1966, 5, 41.
14 S. E. Denmark and L. R. Marcin, J. Org. Chem., 1993, 58, 3857.
15 All calculations used the PM3 Hamiltonian as implemented in
MOPAC version 6.0 (JJP Stewart, MOPAC (QCPE 455)).
Approximate transition states were located by SADDLE
N-Benzyl-3,3-dichloro-4-chloromethyl-5-methylpiperidin-2-
one 27b. Yield 88% for mixture (Found: C, 52.85; H, 5.0; N, 4.4;
Cl, 32.8. C14H16Cl3NO requires C, 52.4; H, 5.0; N, 4.4; Cl,
33.2%); νmax (CH2Cl2)/cmϪ1 1677; data for trans compound,
δH(250 MHz; CDCl3) 7.40–7.20 (5 H, m, Ar), 4.82 (1 H, d,
J 14.5, CHHPh), 4.44 (1 H, d, J 14.5, CHHPh), 4.16 (1 H, dd,
J 12.1 and 1.0, CHHCl), 3.69 (1 H, dd, J 12.1 and 5.9,
CHHCl), 3.23 (1 H, dd, J 12.6 and 5.4, NCHH), 3.02 (1 H, dd,
J 12.6 and 10.6, NCHH), 2.56 (1 H, ddd, J 11.1, 6.2 and 1.7,
CHCH2Cl), 2.33 (1 H, m, CHMe) and 1.18 (3 H, d, J 6.9, Me);
δC(62.9 MHz; CDCl3) 163.9 (s), 135.9 (s), 128.9 (2 × d), 128.2
(2 × d), 128.1 (d), 87.6 (s), 57.9 (d), 52.8 (t), 51.5 (t), 43.2 (t), 30.8
(d) and 16.4 (q): data for cis compound, δH(250 MHz; CDCl3)
7.40–7.20 (5 H, m, Ar), 4.73 (1 H, d, J 14.5, CHHPh), 4.57 (1 H,
d, J 14.5, CHHPh), 4.05 (1 H, dd, J 11.6 and 3.1, CHHCl), 3.91
(1 H, dd, J 11.6 and 8.4, CHHCl), 3.45 (1 H, dd, J 12.6 and 5.1,
NCHH), 3.19 (1 H, dd, J 12.6 and 5.2, NCHH), 2.93 (1 H, m,
CHCH2Cl), 2.33 (1 H, m, CHMe) and 1.06 (3 H, d, J 7.4, Me);
δC(62.9 MHz; CDCl3) 163.8 (s), 135.7 (s), 128.4 (2 × d), 128.0
(2 × d), 127.9 (d), 87.3 (s), 56.2 (d), 53.8 (t), 52.8 (t), 41.9 (t), 26.7
(d) and 13.2 (q); m/z (EI) for mixture 319 (64%, Mϩ), 284 (35),
249 (100), 214 (22) and 91 (18).
N-(1-ꢁ-Methylbenzyl)-3,3-dichloro-4-chloromethylpiperidin-2-
one 27c. Yield 96%, as a clear oil, for mixture (Found: C, 53.0;
H, 5.1; N, 4.3. C14H16Cl3NO requires C, 52.4; H, 5.0; N, 4.4%);
νmax (CH2Cl2)/cmϪ1 1667; δH(250 MHz; CDCl3) 7.40 (5 H, m,
Ar), 6.03 (1 H, m, CHMe), 4.20 (0.5 H, m, CHHCl), 4.14 (0.5
H, m, CHHCl), 3.58 (1 H, m, CHHCl), 3.16–3.28 (1 H, m,
CHHN), 3.08 (0.5 H, m, CHHN), 2.80–2.60 (1 H, m, CH), 2.68
(0.5 H, m, CHHN), 2.24–2.41 (1.5 H, m, CHH), 2.24–2.41 (0.5
H, m, CHH), 1.56 (1.5 H, d, J 8.3, Me) and 1.60 (1.5 H, d, J 8.3,
Me); δC(62.9 MHz; CDCl3) 165.4 (s), 165.2 (s), 138.4 (s), 138.6
J. Chem. Soc., Perkin Trans. 1, 2000, 671–680
679