Concise Article
MedChemComm
4-arylquinoline-2-carboxamides were rapidly assembled using a
9 S. L. Pimlott and A. Sutherland, Chem. Soc. Rev., 2011, 40,
149–162.
¨
Friedlander condensation or iodine and copper-catalysed multi-
´
component reactions. Biological testing of these compounds 10 (a) F. Chauveau, H. Boutin, N. Van Camp, F. Dolle and
using a competition binding assay with rat brain homogenates
guided the design of subsequent analogues. This led to the
identication of 3-iodomethylquinoline-2-carboxamide 13
B. Tavitian, Eur. J. Nucl. Med. Mol. Imaging, 2008, 35, 2304–
2319; (b) C. Luus, R. Hanani, A. Reynolds and M. Kassiou,
J. Labelled Compd. Radiopharm., 2010, 53, 501–510.
which has excellent physicochemical properties and high 11 (a) R. Camsonne, C. Crouzel, D. Comar, M. Maziere,
nanomolar affinity for the TSPO. Further analogues revealed
that substituents on the benzene ring of the quinoline are not
suitable as high affinity agents for the TSPO. This led ultimately
to the design of 4-(2-iodophenyl)quinoline-2-N-diethylcarbox-
C. Prenant, J. Sastre, M. A. Moulin and A. Syrota, J Label.
Compd. Radiopharm., 1984, 21, 985–991; (b) K. Hashimoto,
O. Inoue, K. Suzuki, T. Yamasaki and M. Kojima, Ann.
Nucl. Med., 1989, 3, 63–71.
amide (32) which, with a good balance of exibility and steric 12 (a) D. L. Gildersleeve, M. E. VanDort, J. W. Johnson,
bulk was found to have an excellent Ki value of 5.01 nM. Overall,
this compound has similar physicochemical properties to
PK11195 but with increased potency has the potential to act as a
P. S. Sherman and D. M. Wieland, Nucl. Med. Biol., 1996,
23, 23–28; (b) S. L. Pimlott, L. Stevenson, D. J. Wyper and
A. Sutherland, Nucl. Med. Biol., 2008, 35, 537–542.
more effective imaging agent for the TSPO. The radioiodination 13 (a) A. Cagnin, D. J. Brooks, A. M. Kennedy, R. N. Gunn,
of these compounds using for example, a nucleophilic substi-
tution reaction of the chloride precursor of 13 and an iodo-
destannylation or halogen exchange reaction of 32 is currently
being established.12b,32 Further studies with these radiolabelled
compounds for in vivo evaluation will be reported in due course.
R. Myers, F. E. Turkheimer, T. Jones and R. B. Banati,
Lancet, 2001, 358, 461–467; (b) J. J. Versijpt, F. Dumont,
K. J. Van Laere, D. Decoo, P. Santens, K. Audenaert,
E. Achten, G. Slegers, R. A. Dierckx and J. Korf, Eur.
Neurol., 2003, 50, 39–47.
14 (a) R. B. Banati, G. W. Goerres, R. Myers, R. N. Gunn,
F. E. Turkheimer, G. W. Kreutzberg, D. J. Brooks, T. Jones
and J. S. Duncan, Neurology, 1999, 53, 2199–2203; (b)
A. Cagnin, R. Myers, R. N. Gunn, A. D. Lawrence,
T. Stevens, G. W. Kreutzberg, T. Jones and R. B. Banati,
Brain, 2001, 124, 2014–2027.
Notes and references
1 (a) A. M. Scarf, L. M. Ittner and M. Kassiou, J. Med. Chem.,
2009, 52, 581–592; (b) R. Rupprecht, V. Papadopoulos,
G. Rammes, T. C. Baghai, J. Fan, N. Akula, G. Groyer, 15 R. B. Banati, J. Newcombe, R. N. Gunn, A. Cagnin,
D. Adams and M. Schumaker, Nat. Rev. Drug Discovery,
2010, 9, 971–988; (c) A. M. Scarf and M. Kassiou, J. Nucl.
Med., 2011, 52, 677–680.
F. Turkheimer, F. Heppner, G. Price, F. Wegner,
G. Giovannoni, D. H. Miller, G. D. Perkin, T. Smith,
A. K. Hewson, G. Bydder, G. W. Kreutzberg, T. Jones,
M. L. Cuzner and R. Myers, Brain, 2000, 123, 2321–2337.
2 (a) P. J. Syapin and P. Skolnick, J. Neurochem., 1979, 32, 1047–
1051; (b) J. Benavides, D. Fage, C. Carter and B. Scatton, Brain 16 A. Gerhard, N. Pavese, G. Hotton, F. Turkheimer, M. Es,
Res., 1987, 421, 167–172.
3 J. G. Richards and H. Mohler, Neuropharmacology, 1984, 23,
233–242.
4 S. Galiegue, N. Tinel and P. Casellas, Curr. Med. Chem., 2003,
10, 1563–1572.
5 R. B. Banati, Glia, 2002, 40, 206–217.
6 F. Gonzalez-Scarano and G. Baltuch, Annu. Rev. Neurosci.,
1999, 22, 219–240.
A. Hammers, K. Eggert, W. Oertel, R. B. Banati and
D. J. Brooks, Neurobiol. Dis., 2006, 21, 404–412.
17 (a) S. Pappata, M. Levasseur, R. N. Gunn, R. Myers,
C. Crouzel, A. Syrota, T. Jones, G. W. Kreutzberg and
R. B. Banati, Neurology, 2000, 55, 1052–1054; (b)
A. Gerhard, B. Neumaier, E. Elitok, G. Glatting, V. Ries,
R. Tomczak, A. C. Ludolph and S. N. Reske, Neuroreport,
2000, 11, 2957–2960; (c) A. Gerhard, J. Schwarz, R. Myers,
R. Wise and R. B. Banati, NeuroImage, 2005, 24, 591–595.
7 (a) J. Maeda, B. Ji, T. Irie, T. Tomiyama, M. Maruyama,
T. Okauchi, M. Staufenbiel, N. Iwata, M. Ono, T. C. Saido, 18 (a) D. R. Owen, O. W. Howell, S.-P. Tang, L. A. Wells,
K. Suzuki, H. Mori, M. Higuchi and T. Suhara, J. Neurosci.,
2007, 27, 10957–10968; (b) S. Venneti, G. Wang, J. Nguyen
and C. A. Wiley, J. Neuropathol. Exp. Neurol., 2008, 67,
1001–1010; (c) F. Yasuno, M. Ota, J. Kosaka, H. Ito,
M. Higuchi, T. K. Doronbekov, S. Nozaki, Y. Fujimura,
M. Koeda, T. Asada and T. Suhara, Biol. Psychiatry, 2008,
64, 835–841.
8 (a) M. Imaizumi, H. J. Kim, S. S. Zoghbi, E. Briard, J. Hong,
J. L. Musachio, C. Ruetzler, D. M. Chuang, V. W. Pike,
R. B. Innis and M. Fujita, Neurosci. Lett., 2007, 411, 200–
I. Bennacef, M. Bergstrom, R. N. Gunn, E. A. Rabiner,
M. R. Wilkins, R. Reynolds, P. M. Matthews and
C. A. Parker, J. Cereb. Blood Flow Metab., 2010, 30, 1608–
1618; (b) D. R. J. Owen, R. N. Gunn, E. A. Rabiner,
I. Bennacef, M. Fujita, W. C. Kreisl, R. B. Innis, V. W. Pike,
R. Reynolds, P. M. Matthews and C. A. Parker, J. Nucl.
Med., 2011, 52, 24–32; (c) D. R. Owen, A. J. Yeo,
R. N. Gunn, K. Song, G. Wadsworth, A. Lewis, C. Rhodes,
D. J. Pulford, I. Bennacef, C. A. Parker, P. L. StJean,
L. R. Cardon, V. E. Mooser, P. M. Matthews, E. A. Rabiner
and J. P. Rubio, J. Cereb. Blood Flow Metab., 2012, 32, 1–5.
´
205; (b) S. Rojas, A. Martın, M. J. Arranz, D. Pareto,
´
J. Purroy, E. Verdaguer, J. Llop, V. Gomez, J. D. Gispert, 19 (a) A. Cappelli, M. Anzini, S. Vomero, P. G. De Benedetti,
´
O. Millan, A. Chamorro and A. M. Planas, J. Cereb. Blood
M. C. Menziani, G. Giorgi and C. Manzoni, J. Med. Chem.,
1997, 40, 2910–2921; (b) M. Matarrese, R. M. Moresco,
Flow Metab., 2007, 27, 1975–1986.
This journal is ª The Royal Society of Chemistry 2013
Med. Chem. Commun., 2013, 4, 1461–1466 | 1465