Lewis Acid Catalyzed Synthesis of Cyclic Carbonates
Ferrié, L. Boulard, F. Pradaux, S. Bouzbouz, S. Reymond, P.
Capdevielle, J. Cossy, J. Org. Chem. 2008, 73, 1864.
For a review on organic carbonates, see: A.-A. G. Shaikh,
Chem. Rev. 1996, 96, 951.
aldehyde. An enantioselective allyltitanation with the
Duthaler–Hafner complex (S,S)-Ti-I[22] was then performed
to afford the expected homoallylic alcohol 6 with good yield
and enantiomeric excess (ee Ͼ 90%). A cross-metathesis
with 1-phenylallyl acetate in the presence of the Grubbs II
catalyst (GII) and CuI[23] furnished 7, which was trans-
formed into carbonate 8 upon treatment with Boc2O. When
this homoallylic carbonate was treated with 10 mol-%
InCl3, the corresponding cyclic product was isolated with a
good yield of 81% albeit with a moderate diastereoselecti-
vity of 73:27 in favor of the cis-isomer. Flash chroma-
tography on silica gel allowed a partial separation of the
two diastereomers, and a pure sample of the cis-compound
was isolated. Finally, the use of K2CO3 in MeOH provided
(3S,5S)-alpinikatin through carbonate methanolysis and de-
protection of the phenolic group.
[3]
[4]
a) P. A. Bartlett, J. D. Meadows, E. G. Brown, A. Morimoto,
K. K. Jernstedt, J. Org. Chem. 1982, 47, 4013; b) A. Bongini,
G. Cardilo, M. Orena, G. Porzi, S. Sandri, J. Org. Chem. 1982,
47, 4626; c) M. Hirama, M. Uei, Tetrahedron Lett. 1982, 23,
5307; d) J. J.-W. Duan, P. A. Sprengeler, A. B. Smith III, Tetra-
hedron Lett. 1992, 33, 6439; e) J. J.-W. Duan, A. B. Smith III,
J. Org. Chem. 1993, 58, 3703; f) R. E. Babine, Tetrahedron Lett.
1986, 27, 5791; g) D. Askin, R. P. Volante, R. A. Reamer,
K. M. Ryan, I. Shinkai, Tetrahedron Lett. 1988, 29, 277.
Carbamates were also used in halogenocyclizations to give cy-
clic carbonates, see: a) P. Kocˇovský, Tetrahedron Lett. 1986, 27,
5521; b) C. P. Holmes, P. A. Bartlett, J. Org. Chem. 1989, 54,
98; c) S. J. Hecker, C. H. Heathcock, J. Am. Chem. Soc. 1986,
108, 4586; d) Y. Guindon, L. Murtagh, V. Caron, S. R. Landry,
G. Jung, M. Bencheqroun, A.-M. Faucher, B. Guérin, J. Org.
Chem. 2001, 66, 5427.
For selected recent examples, see: a) B. Das, M. Krishnaiah,
C. Sudhakar, Bioorg. Med. Chem. Lett. 2010, 20, 2303; b) B.
Chinnababu, S. P. Reddy, C. B. Rao, K. Rajesh, Y. Venkates-
warlu, Helv. Chim. Acta 2010, 93, 1960; c) A. B. Smith III,
V. A. Doughty, C. Sfouggatakis, C. S. Bennett, J. Koyanagi, M.
Takeuchi, Org. Lett. 2002, 4, 783; d) K. Lee, H. Kim, J. Hong,
Org. Lett. 2011, 13, 2722; e) C. E. Stivala, Z. Gu, L. L. Smith,
A. Zakarian, Org. Lett. 2012, 14, 804; f) R. W. Bates, K. Palani,
Tetrahedron Lett. 2008, 49, 2832; g) D. K. Mohapatra, E. Bhi-
mireddy, P. S. Krishnarao, P. P. Das, J. S. Yadav, Org. Lett.
2011, 13, 744; h) D. S. Reddy, D. K. Mohapatra, Eur. J. Org.
Chem. 2013, 1051.
a) M. Yoshida, M. Ihara, Angew. Chem. Int. Ed. 2001, 40, 616;
Angew. Chem. 2001, 113, 636; b) M. Yoshida, M. Fujita, M.
Ihara, Org. Lett. 2003, 5, 3325; c) M. Yoshida, M. Fujita, T.
Ishii, M. Ihara, J. Am. Chem. Soc. 2003, 125, 4874; d) M. Yosh-
ida, M. Ihara, Chem. Eur. J. 2004, 10, 2886; e) M. Yoshida, Y.
Ohsawa, M. Ihara, Tetrahedron 2006, 62, 11218; f) A. Gordillo,
G. C. Lloyd-Jones, Chem. Eur. J. 2012, 18, 2660.
[5]
[6]
Conclusions
In summary, we have developed a new approach to five-
and six-membered-ring cyclic carbonates by a Lewis acid
catalyzed cyclization of allylic and homoallylic tert-butyl
carbonates. In most examples, the reaction proceeds with
high yields and moderate diastereoselectivities. The cheap
FeCl3·6H2O with its low toxicity can be used as a catalyst
for the cyclization, but InCl3 was preferred when functional
groups were present. The synthesized carbonates can easily
be transformed to the corresponding 1,2- and 1,3-diols, and
the method has been successfully applied to the total syn-
thesis of a natural product, (3S,5S)-alpinikatin.
[7]
Experimental Section
[8]
[9]
For an indium-promoted synthesis of carbonates, see: M. Lom-
bardo, F. Pasi, C. Trombini, Eur. J. Org. Chem. 2006, 3061.
Typical Procedure for Lewis Acid Catalyzed Cyclization of Allylic
and Homoallylic Carbonates: To a solution of the tert-butyl carb-
onate A (1 equiv.) in CH3CN (0.1 m) was added FeCl3·6H2O
(0.1 equiv.) or InCl3 (0.1 equiv.). The resulting mixture was stirred
for 24 h at room temp., and the crude mixture was concentrated
under reduced pressure. Flash chromatography on silica gel af-
forded the desired cyclic carbonates B.
Gold-catalyzed rearrangement of propargylic tert-butyl
carbonates has been well documented, see for example: a) A.
Buzas, F. Gagosz, Org. Lett. 2006, 8, 515; b) C. Lim, J.-E.
Kang, J.-E. Lee, S. Shin, Org. Lett. 2007, 9, 3539; c) A. K.
Buzas, F. M. Istrate, F. Gagosz, Tetrahedron 2009, 65, 1889; d)
J.-E. Kang, S. Shin, Synlett 2006, 717.
a) B. Anxionnat, A. Guérinot, S. Reymond, J. Cossy, Tetrahe-
dron Lett. 2009, 50, 3470; b) A. Guérinot, A. Serra-Muns, C.
Gnamm, C. Bensoussan, S. Reymond, J. Cossy, Org. Lett.
2010, 12, 1808; c) A. Guérinot, A. Serra-Muns, C. Bensoussan,
S. Reymond, J. Cossy, Tetrahedron 2011, 67, 5024; d) J. Cornil,
A. Guérinot, S. Reymond, J. Cossy, J. Org. Chem. 2013, 78,
10273.
[10]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data and copies of
1H NMR and 13C NMR spectra.
Acknowledgments
[11]
[12]
The same results were obtained with anhydrous FeCl3 and
FeCl3·6H2O, and the latter was preferred as it was easier to
handle.
FeCl3·6H2O was purchased from Sigma–Aldrich (purity 97%,
Cu Ͻ 0.003%, Zn Ͻ 0.003%).
Agence Nationale de la Recherche (ANR) is thanked for financial
support.
[13]
[14]
InCl3 was purchased from Sigma–Aldrich (98%).
Surprisingly, in CH2Cl2, the use of InCl3 (10 mol-%) led to
poor conversion of 1a (17%).
The reactions became sluggish, and the sole new product ob-
served resulted from a cleavage of the Boc group. Increasing
the temperature to 50 or 120 °C under microwave irradiation
did not improve the result.
Nucleophilic attack of the hydroxy group took place, delivering
the seven-membered ring with no diastereoselectivity in 50%
yield; see Supporting Information for more details.
[1] For reviews, see a) S. E. Bode, M. Wolberg, M. Müller, Synthe-
sis 2006, 4, 557; b) P. Gupta, N. Mahajan, S. C. Taneja, Catal.
Sci. Technol. 2013, 3, 2462. See also S. Bouzbouz, J. Cossy, Org.
Lett. 2000, 2, 501.
[2] Our group has been involved in the synthesis of natural prod-
ucts possessing 1,3-diol moieties, see for example: a) S. Bouz-
bouz, J. Cossy, Org. Lett. 2001, 3, 3995; b) J. Cossy, C. Willis,
V. Bellosta, L. Saint-James, Synthesis 2002, 7, 951; c) S. Bouz-
bouz, J. Cossy, Org. Lett. 2003, 5, 1995; d) L. Ferrié, S. Re-
ymond, P. Capdevielle, J. Cossy, Org. Lett. 2007, 9, 2461; e) L.
[15]
[16]
Eur. J. Org. Chem. 2014, 4958–4962
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4961