ChemComm
Communication
electron transfer by enhancing the rigidity of the peptide back-
bone. This then generates an additional reorganisation energy
barrier which restricts the necessary torsional motions that lead to
facile intramolecular electron transfer along the backbone. Our
results provide definitive evidence of a direct link between back-
bone rigidity and electron transfer in peptides. These findings
provide a new means to fine tune the rates of electron transfer in
peptides, which represent an important step towards their imple-
mentation into molecular electronic assemblies.
Notes and references
1 H. S. Mandal and H.-B. Kraatz, J. Phys. Chem. Lett., 2012, 3, 709.
2 R. A. Malak, Z. N. Gao, J. F. Wishart and S. S. Isied, J. Am. Chem. Soc.,
2004, 126, 13888.
3 P. A. Brooksby, K. H. Anderson, A. J. Downard and A. D. Abell,
J. Phys. Chem. C, 2011, 115, 7516.
4 J. Yu, D. M. Huang, J. G. Shapter and A. D. Abell, J. Phys. Chem. C,
2012, 116, 26608.
5 Y.-F. Wang, Z.-Y. Yu, J. Wu and C.-B. Liu, J. Phys. Chem. A, 2009, 113,
10521–10526.
Fig. 2 Constructed diabatic states in constrained peptide 9 (top) and
unconstrained peptide 10 (bottom). Charge localisation fragments of the
molecule involving the side bridge are indicated using two different
colours in peptide 9.
6 Y. Arikuma, H. Nakayama, T. Morita and S. Kimura, Angew. Chem.,
Int. Ed., 2010, 49, 1800.
7 J. A. Gao, P. Muller, M. Wang, S. Eckhardt, M. Lauz, K. M. Fromm
and B. Giese, Angew. Chem., Int. Ed., 2011, 50, 1926.
8 J. Watanabe, T. Morita and S. Kimura, J. Phys. Chem. B, 2005,
109, 14416.
9 M. Lauz, S. Eckhardt, K. M. Fromm and B. Giese, Phys. Chem. Chem.
Phys., 2012, 14, 13785–13788.
Table 2 Comparison of computed reorganisation energies for electron
hopping steps involving diabatic state S3 in the two model peptides (9 and 10)
Hopping
step
Peptide 9
Peptide 10
Difference
(kcal molÀ1
)
(kcal molÀ1
)
(kcal molÀ1
)
S2 - S3
S3 - S2
S3 - S4
S4 - S3
28.99
30.62
25.41
30.68
24.09
24.57
22.27
23.71
4.90
6.05
3.14
6.97
10 J. Yu, O. Zvarec, D. M. Huang, M. A. Bissett, D. B. Scanlon, J. G.
Shapter and A. D. Abell, Chem. Commun., 2012, 48, 1132.
11 J. Yu, J. R. Horsley and A. D. Abell, Aust. J. Chem., 2013, 66, 848.
12 E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle and S. H. Lin, Proc.
Natl. Acad. Sci. U. S. A., 2000, 97, 1068.
13 E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle and S. H. Lin, Angew.
Chem., Int. Ed., 2007, 46, 3196.
14 S. Okamoto, T. Morita and S. Kimura, Langmuir, 2009, 25, 3297.
15 G. A. Orlowski, S. Chowdhury and H. B. Kraatz, Electrochim. Acta,
2007, 53, 2034.
16 K. Takeda, T. Morita and S. Kimura, J. Phys. Chem. B, 2008, 112, 12840.
17 M. M. Galka and H. B. Kraatz, ChemPhysChem, 2002, 3, 356.
18 Z. Biron, S. Khare, A. O. Samson, Y. Hayek, F. Naider and J. Anglister,
Biochemistry, 2002, 41, 12687.
19 C. Toniolo, A. Polese, F. Formaggio, M. Crisma and J. Kamphuis,
J. Am. Chem. Soc., 1996, 118, 2744.
20 A. K. Boal, I. Guryanov, A. Moretto, M. Crisma, E. L. Lanni, C. Toniolo,
R. H. Grubbs and D. J. O’Leary, J. Am. Chem. Soc., 2007, 129, 6986.
21 N. A. Burton, M. J. Harrison, J. C. Hart, I. H. Hillier and D. W. Sheppard,
Faraday Discuss. Chem. Soc., 1998, 110, 463.
22 O. Jacobsen, H. Maekawa, N. H. Ge, C. H. Gorbitz, P. Rongved,
O. P. Ottersen, M. Amiry-Moghaddam and J. Klaveness, J. Org. Chem.,
2011, 76, 1228.
23 J. J. Gooding, R. Wibowo, J. Q. Liu, W. R. Yang, D. Losic, S. Orbons,
F. J. Mearns, J. G. Shapter and D. B. Hibbert, J. Am. Chem. Soc., 2003,
125, 9006.
24 K. E. Moore, B. S. Flavel, A. V. Ellis and J. G. Shapter, Carbon, 2011, 49, 2639.
25 K. E. Moore, B. S. Flavel, J. Yu, A. D. Abell and J. G. Shapter,
Electrochim. Acta, 2013, 89, 206.
energies for all electron hopping steps, except those involving
diabatic state S3. The reorganisation energies for the forward and
backward electron hopping steps from diabatic state S3 in 9 are
much higher than those for the corresponding steps in 10
(see Table 2). The introduction of the side-bridge gives rise to a
significant increase in reorganisation energy, in the range of
3.14–6.97 kcal molÀ1. Thus the higher reorganisation energy
barrier in peptide 9 is a direct result of the side-bridge constraint,
thus further supporting our experimental results.
In summary, electrochemical studies are reported on two
peptides containing Aib residues that constrain the backbones
into a well-defined 310-helix, a secondary structure known to favour
electron transfer. The first of these peptides (1) has its helical
geometry stabilised with a covalent constraint that links its i and
i + 3 side chains, resulting in additional conformational rigidity in
the backbone. Electrochemical studies revealed that peptide 1
exhibited a significant formal potential shift to the positive
(480 mV), and a substantial decrease in the electron transfer rate 26 K. T. Constantopoulos, C. J. Shearer, A. V. Ellis, N. H. Voelcker and
J. C. Shapter, Adv. Mater, 2010, 22, 557.
27 P. Diao and Z. F. Liu, Adv. Mater., 2010, 22, 1430.
28 E. Laviron, J. Electroanal. Chem., 1979, 100, 263.
constant (25%), compared to the unconstrained peptide 2. These
differences reflect the extent of backbone rigidity imparted by the
side-bridge constraint. In support, the all Aib containing linear 29 E. Wierzbinski, A. de Leon, X. Yin, A. Balaeff, K. L. Davis, S. Reppireddy,
R. Venkatramani, S. Keinan, D. H. Ly, M. Madrid, D. N. Beratan,
C. Achim and D. H. Waldeck, J. Am. Chem. Soc., 2012, 134, 9335.
30 E. Hatcher, A. Balaeff, S. Keinan, R. Venkatramani and D. N. Beratan,
peptide 8 displayed formal potential and electron transfer rate
constant values between those of peptides 1 and 2. This reflects an
intermediary backbone rigidity for this peptide. High level calcula-
tions confirm that the additional reorganisation energy barrier is a
direct result of the backbone rigidity imparted by the side-bridge
constraint. Thus the tether significantly impedes intramolecular
J. Am. Chem. Soc., 2008, 130, 11752.
31 T. Van Voorhis, T. Kowalczyk, B. Kaduk, L. P. Wang, C. L. Cheng and
Q. Wu, Annu. Rev. Phys. Chem., 2010, 61, 149–170.
32 A. Farazdel, M. Dupuis, E. Clementi and A. Aviram, J. Am. Chem.
Soc., 1990, 112, 4206.
1654 | Chem. Commun., 2014, 50, 1652--1654
This journal is ©The Royal Society of Chemistry 2014