Communication
ChemComm
the endogenous GrsB protein with 40% peptide coverage low-abundance enzymes in proteomic samples, and we are cur-
(Fig. S5 and S6, ESI†). rently applying cocktails of these probes for studying biosynthetic
With proteomic tools in hand, we finally attempted to demon- pathways in a variety of natural product producer organisms.
strate individual labeling and profiling of substrate preference of This work was partly supported by the Sasakawa Scientific
A domains in GrsA and GrsB by a combination of probes 1–3 with Research Grant from The Japan Science Society (S.K.), a Grant-in
inhibitors 4–8. In order to investigate GrsA labeling, ATCC 9999 Aid for Young Scientists (B) 26750370 (F.I.), and the research
lysates were preincubated with inhibitors 4–8 (100 mM) before the grant from the Japan Society of the Promotion of Science and the
addition of 1 mM of probe 1, and the samples were exposed to Ministry of Education, Culture, Sports, Science and Technology
ultraviolet light for 30 min and treated with an Rh-azide. To in Japan (MEXT) (H.K.). We thank Prof. Mohamed Marahiel
¨
evaluate the labeling of GrsB, DSM 5759 lysates were individually (Philipps-Universitat Marburg, Germany) for providing the GrsA
treated with 100 mM of inhibitors 4–8 before the addition of 1 mM and TycB1 expression constructs.
probes 2 and 3. As shown in Fig. 4d, the labeling of GrsB by
probes 2 and 3 disappeared only by the addition of 5 and 7,
respectively. These results validated that probes 2 and 3 selectively
Notes and references
1 C. T. Walsh, Science, 2004, 303, 1805–1810.
targeted individual A domains housed on GrsB, A2 (L-Pro) and A4
(L-Orn), respectively. In contrast, the labeling of GrsA by probe 1
was abrogated in the presence of either 4 or 8. This labeling
pattern of GrsA correlates well with its substrate preferences,
because the A domain of GrsA is known to recognize L-Leu as a
miscognate substrate with lower catalytic efficiency than that of
L-Phe.21 Concurrently, these experiments emphasized the signifi-
cant differences with the substrate specificity of individual A
domains by comparing the competitive activity-based protein
profiling (ABPP) of the A domains.
2 M. A. Fischbach and C. T. Walsh, Chem. Rev., 2006, 106, 3468–3496.
3 D. E. Cane, C. T. Walsh and C. Khosla, Science, 1998, 282, 63–68.
4 C. P. Reyes, J. J. La Clair and M. D. Burkart, Chem. Commun., 2010,
46, 8151–8153.
5 (a) D. E. Cane and C. T. Walsh, Chem. Biol., 1999, 6, R319–R325;
(b) B. A. Pfeifer and C. Khosla, Microbiol. Mol. Biol. Rev., 2001, 65,
106–118.
6 J. L. Meier, A. C. Mercer and M. D. Burkart, J. Am. Chem. Soc., 2008,
130, 5443–5445.
7 F. Ishikawa, R. W. Haushalter and M. D. Burkart, J. Am. Chem. Soc.,
2012, 134, 769–772.
8 B. P. Duckworth, D. J. Wilson, K. M. Nelson, H. I. Boshoff, C. E. Barry
III and C. C. Aldrich, ACS Chem. Biol., 2012, 7, 1653–1658.
9 J. L. Meier, S. Niessen, H. S. Hoover, T. L. Foley, B. F. Cravatt and
M. D. Burkart, ACS Chem. Biol., 2009, 4, 948–957.
10 J. L. Meier and M. D. Burkart, Curr. Opin. Chem. Biol., 2011, 15, 48–56.
In summary, we have demonstrated practical proteomic tools for
the study of A domains in NRPS enzymes based on the development
of active site-directed proteomic probes for A domains appended to 11 (a) S. A. Sieber and M. A. Marahiel, Chem. Rev., 2005, 105, 715–738;
a clickable benzophenone functionality at the 20-OH of the adeno-
sine skeleton. We have demonstrated the feasibility and general
(b) A. M. Gulick, ACS Chem. Biol., 2009, 4, 811–827; (c) G. H. Hur, C. R.
Vickery and M. D. Burkart, Nat. Prod. Rep., 2012, 29, 1074–1098.
12 (a) A. E. Speers, G. C. Adam and B. F. Cravatt, J. Am. Chem. Soc., 2003,
strategy of selective chemical labeling for A domains in NRPSs by
applying three A domains in two endogenous NRPS enzymes, GrsA
(A1: L-Phe) and GrsB (A2: L-Pro; A4: L-Orn) as well as two recombinant
NRPS enzymes, GrsA (A: L-Phe) and TycB1 (A: L-Pro). The chemical
labeling strategies of A domains could be used to probe natural
product producing bacteria, assign A-domain organization, and
characterize A-domain functions by the competitive ABPP platform.
By using appropriate amino acids as ligands, this labeling technique
offers easy access to virtually any kind of NRPS A domains in
complex biological proteomes. These approaches should be
immediately useful for detecting, monitoring, and tracking the
expression of orphan NRPS and PKS–NRPS hybrid genes in
125, 4686–4687; (b) A. E. Speers and B. F. Cravatt, Chem. Biol., 2004,
11, 535–546.
¨
13 (a) J. Kratzschmar, M. Krause and M. A. Marahiel, J. Bacteriol., 1989,
171, 5422–5429; (b) K. M. Hoyer, C. Mahlert and M. A. Marahiel,
Chem. Biol., 2007, 14, 13–22.
14 (a) R. Finking, A. Neumu¨ller, J. Solsbacher, D. Konz, G. Kretzschmar,
M. Schweitzer, T. Krumm and M. A. Marahiel, ChemBioChem, 2003,
4, 903–906; (b) J. A. Ferreras, J.-S. Ryu, F. Di Lello, D. S. Tan and
L. E. N. Quadri, Nat. Chem. Biol., 2005, 1, 29–32; (c) C. Qiao,
A. Gupte, H. I. Boshoff, D. J. Wilson, E. M. Bennett, R. V. Somu,
C. E. Barry III and C. C. Aldrich, J. Med. Chem., 2007, 50, 6080–6094.
15 E. Conti, T. Stachelhaus, M. A. Maraheil and P. Brick, EMBO J., 1997,
16, 4174–4183.
16 F. Ishikawa and H. Kakeya, Bioorg. Med. Chem. Lett., 2014, 24, 865–869.
17 D. J. Wilson, C. Shi, A. M. Teitelbaum, A. M. Gulick and C. C. Aldrich,
Biochemistry, 2013, 52, 926–937.
sequenced organisms, optimizing fermentative microorganisms 18 H. D. Mootz and M. A. Marahiel, J. Bacteriol., 1997, 179, 6843–6850.
19 D. J. Wilson and C. C. Aldrich, Anal. Biochem., 2010, 404, 56–63.
20 M. Berditsch, S. Afonin and A. S. Ulrich, Appl. Environ. Microbiol.,
and analyzing pathogenic bacteria for the production of small
molecule virulence factors.22 The competitive ABPP approach
2007, 73, 6620–6628.
should be suitable for identifying reversible enzyme inhibitors 21 T. Stachelhaus, H. D. Mootz and M. A. Marahiel, Chem. Biol., 1999,
6, 493–505.
for blocking the production of NRPS and PKS–NRPS virulence
22 (a) H. Gross, Appl. Microbiol. Biotechnol., 2007, 75, 267–277; (b) J. S.
factors.23,24 It may also be possible to use this approach for selective
Cisar and D. S. Tan, Chem. Soc. Rev., 2008, 37, 1320–1329.
visualization, molecular identification, and functional characteriza- 23 M. J. Evans and B. F. Cravatt, Chem. Rev., 2006, 106, 3279–3301.
24 (a) S. Bergmann, J. Schu¨mann, K. Scherlach, C. Lange, A. A.
tion of NRPS and PKS–NRPS hybrid enzymes associated with the
biosynthesis of peptide-based natural products of interest. This is
Brakhage and C. Hertweck, Nat. Chem. Biol., 2007, 3, 213–217;
(b) J. A. Ferreras, K. L. Stirrett, X. Lu, J.-S. Ryu, C. E. Soll, D. S. Tan
because a large portion of these compounds readily correlate with
the amino acid specificity of A domains found on their associated
multifunctional enzymes.25 Combinations of these probes should
further improve the detection, isolation, and high resolution of
and L. E. N. Quadri, Chem. Biol., 2008, 15, 51–61.
25 (a) A. M. A. van Wageningen, P. N. Kirkpatrick, D. H. Williams,
B. R. Harris, J. K. Kershaw, N. J. Lennard, M. Jones, S. J. M. Jones and
P. J. Solenberg, Chem. Biol., 1998, 5, 155–162; (b) J. Schu¨mann and
C. Hertweck, J. Am. Chem. Soc., 2007, 129, 9564–9565.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 2262--2265 | 2265