Page 9 of 11
Journal of the American Chemical Society
!
!
1
2
3
4
5
6
7
8
9
10
https://doi.org/10.1039/C6CC08006E
phene Nanoribbons by Choice of Annealing Temperature.
Nano Research 2018, 11, 6190-6196.
Nguyen, G.D.; Toma, F. M.; Cao, T.; Pedramrazi, Z.; Chen,
C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y.-C.; Favaro,
M.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Bottom-Up
Synthesis of N=13 Sulfur-Doped Graphene Nanoribbons. J.
Phys. Chem. C 2016, 120, 2684-2687.
24
Bronner, C.; Stremlau, S.; Gille, M.; Brauße, F.; Haase, A.;
Hecht, S.; Tegeder, P. Aligning the Band Gap of Graphene
Nanoribbons by Monomer Doping. Angew. Chem. Int.
Ed. 2013, 52, 4422–4425.
36
25
Liu, J.; Li, B.-W.; Tan, Y.-Z.; Giannakopoulos, A.; Sánchez-
Sánchez, C.; Belijonne, C.; Ruffieux, P.; Fasel, R.; Feng, X.;
Müllen, K. Toward Cove-Edged Low Band Gap Graphene
Nanoribbons. J. Am. Chem. Soc. 2015, 137, 6097-6103.
Verzhbitskiy, I. A.; De Corato, M.; Ruini, A.; Molinari, E.;
Narita, A.; Hu, Y.; Schwab, M. G.; Bruna, M.; Yoon, D.;
Milana, S.; Feng, X.; Müllen, K.; Ferrari, A. C.; Casiraghi,
C.; Prezzi, D. Raman Fingerprints of Atomically Precise
Graphene Nanoribbons. Nano Lett. 2016, 16, 3442-3447.
37
Kim, K. T.; Lee, J. W.; Jo, W. H. Charge-Transport Tuning
of Solution-Processable Graphene Nanoribbons by Substitu-
tional Nitrogen Doping. Macromol. Chem. Phys. 2013, 214,
2768-2773.
11
26
12
13
14
15
16
17
18
19
20
38
Vo, T. H.; Perera, U. G. E.; Shekhirev, M.; Pour, M.
M.;Kunkel, D.A.; Lu, H.; Gruberman, A.; Sutter, E.; Cotlet,
M.; Nykypanchuk, D.; Zahl, P.; Enders,A.; Sinitskii, A.; Sut-
ter, P. Nitrogen-Doping Induced Self-Assembly of Graphene
27
!! Wu, J.; Gu, Y.; Muñoz-Mármol, R.; Wu, S.; Han, Y.; Ni, Y.;
Díaz-García, M.; Casado, J. Cove-Edged Nanographenes
with Localized Double Bonds. Angew. Chem. Int. Ed. 2020,
59, 8113-8117.
Nanoribbon-Based
Two-Dimensional
and
Three-
Dimensional Metamaterials. Nano Lett. 2015, 15, 5770-
5777.
Kawai, S.; Nakatsuka, S.; Hatakeyama, T.; Pawlak, R.; Meier,
T.; Tracey, J.; Meyer, E.; Foster, A. S. Multiple Heteroatom
Substitution to Graphene Nanoribbon. Science Advances
2018, 4, eaar7181.
39
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
28
! Yano, Y.; Mitoma, N.; Matsushima, K.; Wang, F.; Matsui,
K.; Takakura, A.; Miyauchi, Y.; Ito, H.; 28, K. Living Annula-
tive !-Extension Polymerization for Graphene Nanoribbon
Synthesis. Nature 2019, 571, 387-392.
40
29
Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo,
D. J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.;
Fischer, F. R. Site-Specific Substitutional Boron Doping of
Semiconducting Armchair Graphene Nanoribbons. J. Am.
Chem. Soc. 2015, 137, 8872–8875.
Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.;
Costache, M. V.; Paradinas, M.; Panighel, M.; Ceballos, G.;
Valenzuela, S. O.; Peña, D.; Mugarza, A. Bottom-up Synthe-
sis of Multifunctional Nanoporous Graphene. 2018, 360,
! Pawlak, R.; Liu, X.; Ninova, S.; D’Astolfo, P.; Drechsel, C.;
Sangtarash, S.; Häner, R.; Decurtins, S.; Sadeghi, H.; Lam-
bert, C. J.; Aschauer, U.; Liu, S.-X.; Meyer, E. Bottom-up
Synthesis of Nitrogen-Doped Porous Graphene Nanorib-
bons. J. Am. Chem. Soc. 2020, 142, 12568-12573.
30
41
42
43
44
45
Piskun, I.; Blackwell, R.; Jornet-Somoza, J.; Zhao, F.; Rubio,
A.; Louie, S.; Fischer, F. Covalent C-N Bond Formation
through a Surface Catalyzed Thermal Cyclodehydrogena-
tion. J. Am. Chem. Soc. 2020, 142, 3696-3700.
Cai, J.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Sode, H.;
Liang, L.; Meunier, V.; Berger, R.; Li, R.; Feng, X.; Müllen,
K.; Fasel, R. Graphene Nanoribbon Heterojunctions. Nat.
Nanotechnol. 2014, 9, 896−900.
31
! Peter H. Jacobsen, Ryan D. McCurdy, Jingwei Jiang, Daniel
J. Rizzo, Gregory Veber, Paul Butler, Rafal Zuzak, Steven G.
Louie, Felix R. Fischer, and Michael F. Crommie, Bottom-up
Assembly of Nanoporous Graphene with Emergent Electron-
ic States, J. Am. Chem. Soc. 2020, 142, 13507–13514.
Wang, X.-Y.; Yao, X.; Narita, A.; Müllen, K. Heteroatom-
Doped Nanographenes with Structural Precision. Acc. Chem.
Res. 2019, 52, 2491-2505.
Zhang, Y.; Zhang, Y.; Li, G.; Lu, J.; Lin, X.; Du, S.; Berger,
R.; Feng, X.; Müllen, K.; Gao, H.-J. Direct Visualization of
Atomically Precise Nitrogen-Doped Graphene Nanoribbons.
Appl. Phys. Lett. 2014, 105, 023101.
32
33
Durr, R. A.; Haberer, D.; Lee, Y.-L.; Blackwell, R.; Kalayjian,
A. M.; Marangoni, T.; Ihm, J.; Louie, S. G.; Fischer, F. R.
Orbitally Matched Edge-Doping in Graphene Nanoribbons.
J. Am. Chem. Soc. 2018, 140, 807-813.
Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.;
Spijker, P.; Meyer, E. Atomically Controlled Substitutional
Boron-Doping of Graphene Nanoribbons. Nature Commun.
2015, 6, 8098.
34
Vo, T. H.; Shekhirev, M.; Kunkel, D. A.; Orange, F.; Guinel,
M. F.-F.; Enders, A.; Sinitskii, A. Bottom-Up Solution Syn-
thesis of Narrow Nitrogen-Doped Graphene Nanoribbons.
Chem. Commun. 2014, 50, 4172-4174.
Wang, X.-Y.; Urgel, J. I.; Barin, G. B.; Eimre, K.; Di Giovan-
nantonio, M.; Milani, A.; Tommasini, M.; Pignedoli, C. A.;
Ruffieux, P.; Feng, X.; Fasel, R.; Müllen, K.; Narita, A. Bot-
tom-Up Synthesis of Heteroatom-Doped Chiral Graphene
Nanoribbons. J. Am. Chem. Soc. 2018, 140, 9104-9107.
Cao, Y.; Qi, J.; Zhang, Y.-F.; Huang, L.; Zheng, Q.; Lin, X.;
Cheng, Z.; Zhang, Y.-Y.; Feng, X.; Du, S.; Pantelides, S.T.;
Gao, H.-J. Tuning the Morphology of Chevron-Type Gra-
https://doi.org/10.1039/C4CC00885E
46
Wegner, G. Topochemical Polymerization of Monomers
with Conjugated Triple Bonds. Makromol. Chem. 1972, 154,
35-48.
35
!
!
ACS Paragon Plus Environment
!
!
!
!!