10.1002/anie.201905475
Angewandte Chemie International Edition
RESEARCH ARTICLE
related chemistry see: b) C. D. Hall, N. Lowther, B. R. Tweedy, A. C.
Hall, G. Shaw, J. Chem. Soc. Perkin Trans. 1998, 2 2047–2054; c) S.
N. Khong, Y. S. Tran, O. Kwon, Tetrahedron, 2010 66, 4760–4768; d)
X.-B. Wang, Y. Saga, R. Shen, H. Fujino, M. Goto, L.-B. Han, RSC
Adv. 2012, 2, 5935–5937; e) S. Takizawa, K. Kishi, Y. Yoshida, S.
Mader, F. A. Arteaga, S. Lee, M. Hoshino, M. Rueping, M. Fujita, H.
Sasai, Angew. Chem. Int. Ed. 2015, 54, 15511–15515. For phospha-
Michael chemistry, see: f) D. Enders, A. Saint-Dizier, M.-I. Lannou, A.
Lenzen, Eur. J. Org. Chem. 2006, 26–49.
18, 3566–3569; b) M. S. Kerr, J. R. de Alaniz, T. Rovis, J. Am. Chem.
Soc. 2002, 124, 10298–10299; c) J. R. de Alaniz, T. Rovis, J. Am.
Chem. Soc. 2005, 127, 6284–6289; d) C. J. Collett, R. S. Massey, O.
R. Maguire, A. S. Batsanov, A. C. O’Donoghue, A. D. Smith, Chem.
Sci. 2013, 4, 1514–1522.
[15] Related adducts have been proposed previously, see for example: R.
C. Johnston, D. T. Cohen, C. C. Eichman, K. A. Scheidt, P. H.-Y.
Cheong, Chem. Sci. 2014, 5, 1974–1982.
[16] For a review see: a) D. J. Faulkner, Synthesis 1971, 175–189; b) A. B.
Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4698–4745; c) E.-i.
Negishi, Z. Huang, G. Wang, S. Mohan, C. Wang, H. Hattori, Acc.
Chem. Res. 2008, 41, 1474–1485; and for examples, see: d) D. A.
Engel, G. B. Dudley, Org. Lett. 2006, 8, 4027–4029; e) C. J. Rieder,
K. J. Winberg, F. G. West, J. Am. Chem. Soc. 2009, 131, 7504–7505;
f) T. T. Nguyen, M. J. Koh, T. J. Mann, R. R. Schrock, A. H. Hoveyda,
Nature 2017, 552, 347–354, and references therein.
[17] Rates calculated at 10 and 20 mol% C3, see SI for details
[18] For the impact of ester tethers in cyclization reactions see: a) C.
Kammerer, G. Prestat, D. Madec, G. Poli, Acc. Chem. Res. 2014, 47,
3439–3447; for the effects of ring size on cyclizations see: b) H.
Ishibashi, Chem. Rec. 2006, 6, 23–31; for Thorpe-Ingold effects: c) M.
E. Jung, G. Piizzi, Chem. Rev. 2005, 105, 1735–1766.
[5] a) Y. Nakano, D. W. Lupton Angew. Chem. Int. Ed. 2016, 55, 3135–
3139; b) L. Scott, Y. Nakano, C. Zhang, D. W. Lupton, Angew. Chem.
Int. Ed. 2018, 57, 10299.
[6] J. Ametovski, U. Dutta, L. Burchill, D. Maiti, D. W. Lupton, J. F. Hooper,
Chem. Commun. 2017, 53, 13071.
[7] For general NHC catalysis see: a) D. Enders, O. Niemeier, A.
Henseler, Chem. Rev. 2007, 107, 5606–5655; b) M. N. Hopkinson, C.
Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496; c) D. M.
Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev.
2015, 115, 9307–9387; for acyl azolium enolates see: d) J. Douglas,
G. Churchill, A. D. Smith, Synthesis 2012, 44, 2295–2309; for
cascade catalysis: e) A. Grossmann, D. Enders, Angew. Chem. Int.
Ed. 2012, 51, 314–325; for acyl anion free catalysis: f) S. J. Ryan, L.
Candish, D. W. Lupton, Chem. Soc. Rev. 2013, 42, 4906–4917; for
acyl azolium catalysis: g) S. D. Sarkar, A. Biswas, R. C. Samanta, A.
Studer, Chem. Eur. J. 2013, 19, 4664–4678; h) C. Zhang, J. F.
Hooper, D. W. Lupton, ACS Catal. 2017, 7, 2583–2596; S. Mondal, S.
R. Yetra, S. Mukherjee, A. T. Biju, Acc. Chem. Res. 2019, 52, 425–
436; for cooperative catalysis: i) M. H. Wang, K. A. Scheidt, Angew.
Chem. Int. Ed. 2016, 55, 14912–14922.
[8] For homoenolate by NHC 1,4-addition see: a) C. Fischer, S. W. Smith,
D. A. Powell, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 1472–1473; for
a review discussing NHC 1,4-addition reactions see: b) X.-Y. Chen, S.
Ye, Org. Biomol. Chem. 2013, 11, 7991–7998; for polymerization via
1,4-addition of NHCs see: c) Y. Zhang, E. Y.-X Chen, Angew. Chem.
Int. Ed. 2012, 51, 2465–2469; d) M. Hong, E. Y.-X. Chen, Angew.
Chem. Int. Ed. 2014, 53, 11900–11906; for a stoichiometric example:
e) W. N. Ottou, D. Bourichon, J. Vignolle, A.-L. Wirotius, F. Robert, Y.
Landais, J.-M. Sotiropoulos, K. Miqueu, D. Taton, Chem. Eur. J. 2015,
21, 9447–9453.
[19] The CD spectra of cyclohexanone 28h were calculated at the TD-
B2PLYP-D3/def2-TZVP/SMD(CH3CN)//B3LYP-D3BJ/6-
31+G(d,p)/SMD(CH3CN) level of theory, for details see SI.
[20] a) M. R. Colsman, M. D. Noirot, M. M. Miller, O. P. Anderson, S. H.
Strauss, J. Am. Chem. Soc. 1988, 110, 6886–6888; b) M. R.
Colsman, T. D. Newbound, L. J. Marshall, M. D. Noirot, M. M. Miller,
G. P. Wulfsberg, J. S. Frye, O. P. Anderson, S. H. Strauss, J. Am.
Chem. Soc. 1990, 112, 2349–2362; c) P. K Hurlburt, O. P. Anderson,
S. H. Strauss, Can. J. Chem. 1992, 70, 726–731; d) T. G. Levitskaia,
J. C. Bryan, R. A. Sachleben, J. D. Lamb, B. A. Moyer, J. Am. Chem.
Soc. 2000, 122, 554–562; e) S. Irvine, W. J. Kerr, A. R. McPherson,
C. M. Pearson, Tetrahedron, 2008, 64, 926–935, and references
therein.
[21] For NHC generation see SI, for other reactions with salt sensitivity
see: a) S. J. Ryan, L. Candish, D. W. Lupton, J. Am. Chem. Soc.
2011, 133, 4694–4697; b) A. Levens, A. Ametovski, D. W. Lupton,
Angew. Chem. Int. Ed. 2016, 55, 16136–16140.
[9] Compound 4 is a type of deoxy-Breslow intermediate, a name used to
describe compounds with a formal double bond from the NHC to a
carbon lacking an oxygen substituent. For other examples see: a) D.
Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J.-P. Melder, K.
Ebel, S. Brode, Angew. Chem. Int. Ed. Engl. 1995, 34, 1021–1023; b)
C. E. I. Knappke, J.-M. Neudörfl, A. J. von Wangelin, Org. Biomol.
Chem. 2010, 8, 1695–1705; c) C. E. I. Knappke, A. J. Arduengo (III),
H. Jiao, J. Haijun, J.-M. Neudörfl, A. J. von Wangelin, Synthesis,
2011, 3784–3795; d) R. N. Reddi, P. K, Prasad, A. Sudalai, Angew.
Chem. Int. Ed. 2015, 54, 14150–14153; e) M. Schedler, N. E. Wurz,
C. G. Daniliuc, F. Glorius, Org. Lett. 2014, 16, 3134–3137; f) A.
Bhunia, S. Thorat, R. G. Gonnade, A. T. Biju, Chem. Commun.
2015, 51, 13690–13693; for properties of see: g) A. Berkessel, S.
Elfert, Adv. Synth. Catal. 2014, 356, 571–578; h) B. Maji, M. Horn, H.
Mayr, Angew. Chem. Int. Ed. 2012, 51, 6231–6235; i) B. Maji, H.
Mayr, Angew. Chem. Int. Ed. 2012, 51, 10408–10412.
[10] For discovery of enal derived homoenolates see a) C. Burstein, F.
Glorius, Angew. Chem. Int. Ed. 2004, 43, 6205–6208; b) K. Y.-K.
Chow, J. W. Bode, J. Am. Chem. Soc. 2004, 126, 8126–8127; For
selected examples: c) N. T. Reynolds, J. R. de Alaniz, T. Rovis, J. Am.
Chem. Soc. 2004, 126, 9518–9519; d) S. S. Sohn, E. L. Rosen, J. W.
Bode, J. Am. Chem. Soc. 2004, 126, 14370–14371; e) A. Chan, K. A.
Scheidt, Org. Lett. 2005, 7, 905–908; f) N. T. Reynolds, T. Rovis, J.
Am. Chem. Soc. 2005, 127, 16406–16407; for reviews see: g) V. Nair,
R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose, V. Sreekumar,
Chem. Soc. Rev. 2011, 40, 5336–5346; h) R. S. Menon, A. T. Biju, V.
Nair, Beilstein J. Org. Chem. 2016, 12, 444–461.
[11] a) S.-i. Matsuoka, Y. Ota, A. Washio, A. Katada, K. Ichioka, K. Takagi,
M. Suzuki, Org. Lett. 2011, 13, 3722–3725; b) S.-i. Matsuoka, Y.
Tochigi, K. Takagi, M. Suzuki, Tetrahedron 2012, 68, 9836–9841; c)
S.-i. Matsuoka, S, Namera, A. Washio, K. Takagi, M. Suzuki, Org. Lett.
2013, 15, 5916–5919; d) T. Kato, Y. Ota, S.-i. Matsuoka, K. Takagi, M.
Suzuki, J. Org. Chem. 2013, 78, 8739–8747; g) T. Kato, S.-i.
Matsuoka, M. Suzuki, J. Org. Chem. 2014, 79, 4484–4494; e) S.-i.
Matsuoka, M. Nakazawa, M. Suzuki, Bull. Chem. Soc. Jpn. 2015, 88,
1093–1099; f) S.-i. Matsuoka, N. Awano, M. Nakazawa, M. Suzuki,
Tetrahedron Lett. 2016, 57, 5707–5711.
[12] A. T. Biju, M. Padmanaban, N. E. Wurz, F. Glorius, Angew. Chem. Int.
Ed. 2011, 50, 8412–8415.
[13] O.-a. Rajachan, M. Paul, V. R. Yatham, J.-M. Neudörfl, K.
Kanokmedhakul, S. Kanokmedhakul, A. Berkessel, Tetrahedron Lett.
2015, 56, 6537–6540.
[14] For the impact of N-substituent on nucleophilcity of NHCs see: a) A.
Levens, F. An, M. Breugst, H. Mayr, D. W. Lupton, Org. Lett. 2016,
7
This article is protected by copyright. All rights reserved.