Organic Letters
Letter
(7) For mechanistic work using model substrates, see: Buono, F. G.;
Iwamura, H.; Blackmond, D. G. Angew. Chem., Int. Ed. 2004, 43, 2099.
(8) (a) Kang, F.-A.; Lanter, J. C.; Cai, C.; Sui, Z.; Murray, W. V.
Chem. Commun. 2010, 46, 1347 and references cited therein. (b) Shi,
C.; Aldrich, C. C. Org. Lett. 2010, 12, 2286. (c) Luo, Y.; Wu, J.
Tetrahedron Lett. 2009, 65, 6810. (d) Kang, F.-A.; Sui, Z.; Murray, W.
V. J. Am. Chem. Soc. 2008, 130, 11300. (e) Ackermann, L.; Mulzer, M.
Org. Lett. 2008, 10, 5043.
Scheme 4. Coupling of 6 with Mestranol
́
(9) (a) Prokopcova, H.; Kappe, C. O. Angew. Chem., Int. Ed. 2009,
48, 2276. (b) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979.
(c) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2001, 3, 91.
(d) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2000, 2, 3229.
(e) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
(10) For dehydrosulfurative couplings of thiono substrates, see:
(a) Sun, Q.; Suzenet, F.; Guillaumet, G. J. Org. Chem. 2010, 75, 3437.
(b) Guinchard, X.; Roulland, E. Org. Lett. 2009, 11, 4700. (c) Arshad,
N.; Hashim, J.; Kappe, C. O. J. Org. Chem. 2009, 74, 5118. (d) Silva,
S.; Sylla, B.; Suzenet, F.; Tatibouet, A.; Rauter, A.; Rollin, P. Org. Lett.
2008, 10, 853. (e) Silva, S.; Tardy, S.; Routier, S.; Suzenet, F.;
Tatibouet, A.; Rauter, A. P.; Rollin, P. Tetrahedron Lett. 2008, 49,
́
5583. (f) Prokopcova, H.; Kappe, C. O. J. Org. Chem. 2007, 72, 4440.
(g) Lengar, A.; Kappe, C. O. Org. Lett. 2004, 6, 771. (h) Luh, T. Y.; Ni,
Z.-J. Synthesis 1990, 89.
(11) For desulfurative alkynylations, see: (a) Reference 10d. (b)
Reference 10b. (c) Mehta, V. P.; Sharma, A.; Van der Eycken, E. Org.
Lett. 2008, 10, 1147.
(12) (a) Arnold, Z. Collect. Czech. Chem. Commun. 1965, 30, 2125.
(b) Keshavarz-K, M.; Cox, S. D.; Angus, R. O.; Wudl, F. Synthesis
1988, 641. (c) Gupton, J. T.; Gall, J. E.; Riesinger, S. W.; Smith, S. Q.;
Bevirt, K. M.; Sikorski, J. A.; Dahl, M. L.; Arnold, Z. J. Heterocycl.
Chem. 1991, 28, 1281. (d) Ragan, J. A.; McDermott, R. E.; Jones, B. P.;
am Ende, D. J.; Clifford, P. J.; McHardy, S. J.; Heck, S. D.; Liras, S.;
Segelstein, B. E. Synlett 2000, 1172. (e) McWilliams, J. C.; Buck, E.;
Eng, K. K.; Maligres, P. E.; Sager, J. W.; Waters, M. S.; Humphrey, G.
R. WO 02/28840 A1, 2002. (f) Davies, I. W.; Tellers, D. M.; Schultz,
C. S.; Fleitz, F. J.; Cai, D.; Sun, Y.-K. Org. Lett. 2002, 4, 2969.
(g) Yamano, M.; Sawai, Y.; Mizuno, M. EP 2258676A1, 2010.
(13) Arnold, Z.; Budesinsky, M.; Pankova, M. Collect. Czech. Chem.
Commun. 1991, 56, 1019.
Figure 2. Additional products obtained from mercapto precursors by
the standard protocol (cf. Table 2 for conditions).
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(14) Crude salt 712e is not exactly the dichloride, but it has the
stoichiometry [C10H23N32+·(Cl−)2·HCl·H2O],12g where part of the
chlorine is furthermore replaced by bromine. This material is
satisfactory for use in the synthesis of 5/6 via 8/9. See the Supporting
Information for details.
ACKNOWLEDGMENTS
This work received support from the Human Frontier Science
Program (RGY0081/2011).
■
REFERENCES
■
(15) According to NMR data in DMSO-d6, 5 and 6 favor the hydroxy
or mercapto tautomer in that solvent, while 6 is also reversibly
hydrated to 4-hydroxy-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbal-
dehyde.
(16) Prolonged heating of 8/9 in acetic acid produces samples of 5/6
containing (thio)urea and ammonium salt impurities.
(17) Reaction of 5 with POCl3 gives 2-chloro-5-dichloromethylpyr-
imidine rather than a monochloroaldehyde, implying preferential
reaction of electrophiles at the formyl group.
(18) See the Supporting Information for additional screening results.
(19) The same 79% yield (qNMR) was obtained in a μW experiment
(110 °C, 30 min) or a thermal experiment (oil bath, 115 °C, 40 min);
the parameters of the thermal experiment were chosen to compensate
for a slower heating rate and a temperature gradient. Differences in the
outcome of catalytic reactions between μW and thermal heating are
mostly due to such factors: Obermayer, D.; Gutmann, B.; Kappe, O.
Angew. Chem., Int. Ed. 2009, 48, 8321.
(1) Shibata, T.; Yonekubo, S.; Soai, K. Angew. Chem., Int. Ed. 1999,
38, 659.
(2) (a) Kawasaki, T.; Soai, K. Bull. Chem. Soc. Jpn. 2011, 84, 879.
(b) Gehring, T.; Busch, M.; Schlageter, M.; Weingand, D. Chirality
2010, 22, 173. (c) Soai, K.; Kawasaki, T. Top. Curr. Chem. 2008, 284,
1.
(3) (a) Soai, K.; Shibata, T.; Sato, I. Acc. Chem. Res. 2000, 33, 382.
(b) Shibata, T.; Yamamoto, J.; Matsumoto, N.; Yonekubo, S.; Osanai,
S.; Soai, K. J. Am. Chem. Soc. 1998, 120, 12157. (c) Shibata, T.;
Hayase, T.; Yamamoto, J.; Soai, K. Tetrahedron: Asymmetry 1997, 8,
1717.
(4) (a) Kawasaki, T.; Matsumura, Y.; Tsutsumi, T.; Suzuki, K.; Ito,
M.; Soai, K. Science 2009, 324, 492. (b) Podlech, J.; Gehring, T. Angew.
Chem., Int. Ed. 2005, 117, 5922. (c) Sato, I.; Urabe, H.; Ishiguro, S.;
Shibata, T.; Soai, K. Angew. Chem., Int. Ed. 2003, 42, 315. (d) Soai, K.;
Sato, I. Chirality 2002, 14, 548. (e) Singleton, D. A.; Vo, L. K. J. Am.
Chem. Soc. 2002, 124, 10010.
(5) (a) Kawasaki, T.; Kamimura, S.; Amihara, A.; Suzuki, K.; Soai, K.
Angew. Chem., Int. Ed. 2011, 50, 6796. (b) Busch, M.; Schlageter, M.;
Weingand, D.; Gehring, T. Chem.Eur. J. 2009, 15, 8251. (c) Gridnev,
I. D.; Serafimov, J. M.; Quiney, H.; Brown, J. M. Org. Biomol. Chem.
2003, 1, 3811. (d) Lutz, F.; Kawasaki, T.; Soai, K. Tetrahedron:
Asymmetry 2006, 17, 486.
(20) The limited solubility of PhCCCu might possibly explain the
low reactivity in the case of phenylacetylene.
(6) Spectral data and experimental details of the synthesis of 1a have
not been communicated so far, to our knowledge.
1285
dx.doi.org/10.1021/ol500189s | Org. Lett. 2014, 16, 1282−1285