10.1002/chem.201900678
Chemistry - A European Journal
COMMUNICATION
(3.5% of total Pd) in cycle 2 and 2.0 ppm in Cycle 3 (1.4% of total
Pd). This result suggests that the Pd(II)-AmP-MCF can to a
Acknowledgements
certain degree operate through
a
release-and-catch
Financial support for this project from The European
Research Council (ERC AdG 247014), The Swedish Research
Council (2016-03897), the Berzelii Center EXSELENT, and the
Knut and Alice Wallenberg Foundation (KAW 2016.0072) is
gratefully acknowledged. O. V. also wishes to acknowledge the
Wenner-Gren Foundations Fellow Program for career support.
mechanism,[18] in which the Pd(II)-AmP-MCF function as a
reservoir of homogeneous and catalytically-active Pd(II) species
that can contribute in the reaction. However, it seemed unlikely
that all of the observed catalytic activity can be ascribed to
homogeneous Pd species, as the levels of leached Pd(II) did not
correlate linearly with product formation. We therefore carried out
a hot filtration test (see SI, Figure S5), and here we could see that
the homogeneous species only contributed marginally to the
observed reaction. The participation of the heterogeneous
component was further supported by a second recycling study
(see SI), in which the cycloisomerization of 1a was performed
over 5 cycles using 0.5 mol% Pd(II)-AmP-MCF over 30 min at rt.
Here in the fifth cycle, a yield of 90% of 2a was obtained when,
interestingly, no homogeneous Pd(II) could be detected by ICP-
OES. Furthermore, this second recycling study also showed that
if one wish to maintain a satisfactory reaction performance over
multiple cycles with the Pd(II)-AmP-MCF catalyst, despite the
observed catalyst deactivation, it is possible to do so by simply
increasing the catalyst loading to 0.5 mol%. With this increased
catalyst loading it was possible to achieve >90% yield of 2a over
all five cycles within 30 min.
Keywords: heterogeneous catalysis • palladium • mesoporous
silica • cycloisomerization • oxazolidinones
References
[1]
a) C. Roger, J. A. Roberts, L. Muller, Clin. Pharmacokinet. 2018, 57, 559-
575; b) K. Michalska, I. Karpiuk, M. Król, S. Tyski, Bioorg. Med. Chem.
2013, 21, 577-591; c) D. J. Diekema, R. N. Jones, Lancet 2001, 358,
1975-1982.
[2]
a) A. Ménoret, J. P. McAleer, S. M. Ngoi, S. Ray, N. A. Eddy, G.
Fenteany, S. J. Lee, R. J. Rossi, B. Mukherij, D. L. Allen, N. G.
Chakraborty, A. T. Vella, J. Immunol. 2009, 183, 7489-7496; b) H.
Kakeya, M. Morishita, H. Koshino, T. Morita, K. Kobayashi, H. Osada, J.
Org. Chem. 1999, 64, 1052-1053.
[3]
a) H. Huang, A. P. Degnan, A. Balakrishnan, A. Easton, M. Gulianello,
Y. Huang, M. Matchett, G. Mattson, R. Miller, K. S. Santone, A. Senapati,
E. E. Shields, D. V. Sivarao, L. B. Snyder, R. Westphal, V. J. Whiterock,
F. Yang, J. J. Bronson, J. E. Macor, Bioorg. Med. Chem. Lett. 2016, 26,
4165-4169; b) H. Prücher, R. Gottschlich, A. Haase, M. Stohhrer, C.
Seyfried, Bioorg. Med. Chem. Lett. 1992, 2, 165-170; c) K. S. Gates, R.
B. Silverman, J. Am. Chem. Soc. 1990, 112, 9364-9372.
100
80
60
Cycle # 1
40
Cycle # 2
20
[4]
[5]
a) M. H. Heravi, V. Zadsirjan, B. Farajpour, RSC Adv. 2016, 6, 30498-
30551; b) D. J. Ager, I. Prakash, D. R. Schaad, Aldrichimica Acta 1997,
30, 3-12; c) M. E. Deyn, D. Swern, Chem. Rev. 1967, 67, 197-246.
a) S. Matsunaga, N. Kumagai, S. Harada, M. Shibasaki, J. Am. Chem.
Soc. 2003, 125, 4712-4713; b) T. S. Powers, W. D. Wulff, J. Quinn, Y.
Shi, W. Jiang, R. Hsung, M. Parisi, A. Rahm, X. Wu Jiang, G. P. A. Yap,
A. L. Rheingold, J. Organomet. Chem. 2001, 617-618, 182-208; c) L. N.
Pridgen, J. Prol Jr., B. Alexander, L. Gillyard, J. Org. Chem. 1989, 54,
3231-3233.
Cycle # 3
0
0
50
100
Time (min)
Figure 1. Recycling study of the cycloisomerization of 1a. Reaction conditions:
Prop-2-yn-1-yl tosylcarbamate (1a, 0.2 mmol), Pd(II)-AmP-MCF (0.25 mol%
Pd), NaOAc (0.1 equiv), acetone (0.4 M) at r.t. Yields were determined by 1H-
NMR against an internal standard.
[6]
For a selection of representative examples, please see: a) D. Zhao, X.
H. Liu, C. Zhu, Y. S. Kang, P. Wang, Z. Shi, Y. Lu, W. Y. Sun,
ChemCatChem 2017, 9, 4598-4606; b) M. Lv, P. Wang, D. Yuan, Y. Yao,
ChemCatChem 2017, 9, 4451-4455; c) P. Brunel, J. Monot, C. E.
Kefalidis, L. Maron, B. Martin-Vaca, D. Bourissou, ACS Catal. 2017, 7,
2652-2660; d) Y. Zhao, J. Qiu, L. Tian, Z. Li, M. Fan, J. Wang, ACS
Sustainable Chem. Eng. 2016, 4, 5553-5560; e) S. Hase, Y. Kayaki, T.
Ikariya, ACS Catal. 2015, 5, 5135–5140; f) C. Bruneau, P. H. Dixneuf, J.
Mol. Catal. 1992, 74, 97-107.
In summary, we have developed an efficient and operationally
simple protocol for the cycloisomerization of propargylic
carbamates, based on the Pd(II)-AmP-MCF catalyst.
Interestingly, high reaction performances could be observed even
when using very low catalyst loading and mild reaction conditions.
In addition this protocol exhibited excellent functional group
tolerance which made it possible to prepare a wide range of 1,3-
oxazolidin-2-one derivatives in high yields. Moreover, it was found
to be possible to recycle the Pd(II)-AmP-MCF catalyst, although
a gradual decrease in performance was observed upon reuse
when using 0.25 mol% catalyst. Interestingly, the use of 0.5 mol%
catalyst led to more robust performance, which enabled recycling
up to 5 times with >90% yield in all cycles after 30 min. Seen
overall, this Pd(II)-AmP-MCF based protocol constitutes a highly
attractive alternative for preparing various oxazolidinones
derivatives on a laboratory scale.
[7]
For a selection of representative examples of cycloisomerization of
propargyl carbamates, please see, please see: a) D. Y. Li, H. J. Chen,
P. N. Liu, Adv. Synth. Catal. 2015, 357, 1193-1198; b) S. Kumar
Alamsetti, A. K. Å. Persson, J. –E. Bäckvall, Org. Lett. 2014, 6, 1434-
1437; c) S. Kumar Alamsetti, A. K. Å. Persson, T. Jiang, J. –E. Bäckvall,
Angew. Chem. Int. Ed. 2013, 52, 13745-13750; d) K. A. Jo, M.
Maheswara, E. Yoon, Y. Y. Lee, H. Yun, E. J. Kang, J. Org. Chem. 2012,
77, 2924-2928; e) R. Ramesh, Y. Chandrasekaran, R. Megha, S.
Chandrasekaran, Tetrahedron 2007, 63, 9153-9162; f) R. Robles-
Machín, J. Adrio, J. C. Carretero, J. Org. Chem. 2006, 71, 5023-5026; g)
A. Buzas, F. Gagosz, Synlett 2006, 17, 2727-2730; h) T. Yoshinao, K.
Masanari, T. Shuji, K. Sigeru, Y. Zen-Ichi, Bull. Chem. Soc. Jpn. 1994,
67, 2838-2849. For other examples of cycloisomerization protocols that
This article is protected by copyright. All rights reserved.