ChemComm
Communication
Table 1 Catalytic hydrosilylation of activated olefins using catalyst 2a
Notes and references
1 (a) B. Marciniec, Coord. Chem. Rev., 2005, 249, 2374; (b) B. Marciniec,
Hydrosilylation: A Comprehensive Review on Recent Advances, Springer,
Dordrecht, The Netherlands, 2009.
2 J. L. Speier, Adv. Organomet. Chem., 1979, 17, 407.
3 (a) B. D. Karsted, US Pat., 3 715 334, 1973; (b) B. D. Karsted, US Pat.,
Entrya Substrate
Silane
T (1C) t (h) Yieldb (%)
1
2
3
4
5
6
7
8
R1QR2QPh
R1QR2QPh
R1QR2QPh
R1QR2QPh
R1QR2QPh
R1QPh, R2QMe HSiPh3
R1QPh, R2QH
R1QBu, R2QH
HSiPh3
HSiPh3
HSiPh3
H2SiPh2
H3SiPh
60
80
100
60
62
27
2
96c
3
715 452, 1973; (c) P. B. Hitchcock, M. F. Lappert and
97c
N. J. W. Warhurst, Angew. Chem., Int. Ed. Engl., 1991, 30, 438.
4 (a) K. Oertle and H. Wetter, Tetrahedron Lett., 1985, 26, 5511;
(b) M. Rubin, T. Schwier and V. J. Gevorgyan, J. Org. Chem., 2002, 67, 1936.
5 S. Harder and J. Brettar, Angew. Chem., Int. Ed., 2006, 45, 3474.
6 (a) K. Tamao and A. Kawachi, Adv. Organomet. Chem., 1995, 30, 1;
(b) P. D. Lickiss and C. M. Smith, Coord. Chem. Rev., 1995, 145, 75;
(c) N. Wiberg, Coord. Chem. Rev., 1997, 163, 217; (d) A. Sekiguchi,
V. Y. Lee and M. Nanjo, Coord. Chem. Rev., 2000, 210, 11.
>99
85
3
60
60
2
2
80
96c
HSiPh3
HSiPh3
25
80
—
—
Polymerization
—
a
Reaction conditions: catalyst (2.5 mmol), olefin (0.1 mmol), silane
7 Preparation of [Ca(SiPh3)2(thf)4] (2a). A solution of [KSiPh3(thf)] (1)
(556 mg, 1.5 mmol) in THF (5 mL) was added to a suspension of
anhydrous CaI2 (220 mg, 0.75 mmol) in THF (5 mL). The colorless
precipitate was filtered off and the solvent was removed under
reduced pressure. After washing with pentane (3 ꢁ 2 mL) and
subsequent drying, [Ca(SiPh3)2(thf)4] (2a) (635 mg, 0.75 mmol,
>99%) was obtained as a pale yellow powder. Crystals of 2a suitable
for single crystal X-ray analysis were grown from THF–pentane
within 1 h at ꢀ30 1C. 1H NMR ([D8]THF, 400.1 MHz): d 1.77
(m, 16H, thf), 3.62 (m, 16H, thf), 6.94–6.97 (m, 6H, para-Ph), 7.01-7.04
(m, 12H, meta-Ph), 7.37–7.39 (m, 12H, ortho-Ph). 13C{1H} NMR
([D8]THF, 100.6 MHz): d 26.39 (thf), 68.21 (thf), 125.46 (para-Ph),
127.27 (meta-Ph), 137.12 (ortho-Ph), 144.97 (ipso-Ph). 29Si{1H} NMR
([D8]THF, 25 1C, 79.5 MHz): d ꢀ13.99 (CaSi). Anal. calc. for
(0.11 mmol). Determined by 1H NMR spectroscopy. Catalyst deacti-
b
c
vation after time indicated.
Using H2SiPh2 or H3SiPh shortened reaction times drastically,
but decreased the yield of the desired products to 85% and 80%,
respectively (Table 1, entries 4 and 5). The substrate scope of catalytic
hydrosilylation was further investigated by using a-methylstyrene
and styrene as substrates. The hydrosilylation of a-methylstyrene
with HSiPh3 yielded 96% of the product (Table 1, entry 6), whereas
styrene polymerized at 25 1C within 2 min (Table 1, entry 7). The
catalytic activity and selectivity of 2a as the hydrosilylation catalyst is
comparable to other calcium complexes.19 As implied by Harder
et al. earlier,19a the catalytic cycle involves insertion of DPE into the
calcium silicon bond to give an alkyl as exemplified by the formation
of 4, which then undergoes reaction with HSiPh3 to give the silyl and
the hydrosilylated product. Noteworthy is the fact that formally
silane acts as a Brønsted acid rather than a latent silylium ion with
reversed polarity of the silicon–hydrogen bond. Therefore neither
oxidative addition following the Chalk–Harrod mechanism nor a
hydride mechanism as known for lanthanides takes place here.20
Finally, 2a reacted with an excess of pyridine within 5 min
selectively to give 4-triphenylsilylpyridine and bis(1,4-dihydro-1-
pyridyl)calcium (5), which were characterized by 1H NMR spectroscopy
(Scheme 2). A fast silylation at the ortho position of pyridine
followed by rearrangement generates the 1,4-insertion product.
Re-aromatization upon calcium hydride formation, instead of
the C–H bond activation reported for pyridine derivatives,21 gave
4-triphenylsilyl pyridine. This compound was reported by Gilman
et al. previously as the product of the reaction of triphenylsilyl lithium
with an excess of pyridine.22 The calcium hydride formed reacted with
pyridine to give 5. Such a reactivity pattern is known for magnesium
and zinc hydrides23 and seems to apply for calcium hydride 3 as well.
In conclusion, earth alkaline metal silyl 2a was synthesized by
salt metathesis and characterized by spectroscopic, crystal diffrac-
tion and computational methods. It catalyzes the hydrosilylation of
activated olefins, supporting the active role of calcium silyls in this
catalysis. Furthermore, 2a activates dihydrogen under mild condi-
tions and undergoes with pyridine a dehydrogenative silylation.
This reactivity pattern reflects the rather unique polarization of the
calcium–silicon bond.
C
52H62CaO4Si2 (847.30 g molꢀ1): Ca, 4.73%. Found: Ca, 4.53%.
8 W. Teng and K. Ruhlandt-Senge, Organometallics, 2004, 23, 2694.
9 (a) S. R. Drake, S. A. S. Miller and D. J. Williams, Inorg. Chem., 1993,
32, 3227; (b) D. Pfeiffer, M. J. Heeg and C. H. Winter, Inorg. Chem.,
2000, 39, 2377; (c) P. Jochmann, T. S. Dols, T. P. Spaniol, L. Perrin,
L. Maron and J. Okuda, Angew. Chem., Int. Ed., 2009, 48, 5715; (d) N. El
Habra, F. Benetollo, M. Casarin, M. Bolzan, A. Sartori and
G. Rossetto, Dalton Trans., 2010, 39, 8064; (e) P. Jochmann,
S. Maslek, T. P. Spaniol and J. Okuda, Organometallics, 2011, 30, 1991.
10 S. Harder, S. Mu¨ller and E. Hu¨bner, Organometallics, 2004, 23, 178.
¨
11 (a) S. Deng, A. Simon and J. Kohler, Angew. Chem., Int. Ed., 2008,
¨
47, 6703; (b) S. Deng, A. Simon and J. Kohler, Solid State Sci., 2000,
2, 31; (c) J. P. Jan and H. L. Skriver, J. Phys. F: Met. Phys., 1981, 11, 805.
12 H. W. Lerner, S. Scholz, M. Bolte and M. Wagner, Z. Anorg. Allg.
Chem., 2004, 630, 443.
13 (a) R. A. Benkeser and R. G. Severson, J. Am. Chem. Soc., 1951,
73, 1424; (b) M. Charisse, M. Mathes, D. Simon and M. Draeger,
J. Organomet. Chem., 1993, 445, 39; (c) H. W. Lerner, S. Scholz and
M. Bolte, Organometallics, 2001, 20, 575; (d) C. Strohmann,
D. Schildbach and D. Auer, J. Am. Chem. Soc., 2005, 127, 7968;
(e) R. Fischer, T. Konopa, S. Ully, J. Baumgartner and C. Marschner,
J. Organomet. Chem., 2003, 685, 79; ( f ) R. Fischer, J. Baumgartner,
G. Kickelbick and C. Marschner, J. Am. Chem. Soc., 2003, 125, 3414.
14 J. Spielmann and S. Harder, Chem.–Eur. J., 2007, 13, 8928.
15 (a) Z. Hou and Y. Wakatsuki, Chem.–Eur. J., 1997, 3, 1005; (b) Z. Hou,
X. Jia, A. Fujita, H. Tezuka, H. Yamazaki and Y. Wakatsuki,
Chem.–Eur. J., 2000, 6, 2994.
16 (a) T. C. Wu, D. Wittenberg and H. Gilman, J. Org. Chem., 1960,
25, 596; (b) A. G. Evans and D. B. George, Proc. Chem. Soc., 1960, 144;
(c) A. G. Evans and D. B. George, J. Chem. Soc., 1961, 4653;
(d) A. G. Evans and D. B. George, J. Chem. Soc., 1962, 141;
(e) A. G. Evans, M. L. Jones and N. H. Rees, J. Chem. Soc. B, 1967,
¨
¨
961; ( f ) G. Kobrich and I. Stober, Chem. Ber., 1970, 103, 2744;
(g) A. G. Evans, M. L. Jones and N. H. Rees, J. Chem. Soc., Perkin
´
Trans. 2, 1972, 389; (h) R. P. Quirk, C. Garces, S. Collins, D. Dabney
and C. Wesdemiotis, Polymer, 2012, 53, 2162.
17 (a) K. Takaki, T. Maeda and M. Ishikawa, J. Org. Chem., 1989, 54, 58;
(b) K. Burgess, J. Cassidy and I. Henderson, J. Org. Chem., 1991,
56, 2050; (c) M. Lautens, R. K. Belter and A. J. Lough, J. Org. Chem.,
1992, 57, 422; (d) B. H. Lipshutz, R. S. Wilhelm and J. A. Kozlowski,
Tetrahedron, 1984, 40, 5005.
We thank the Cluster of Excellence RWTH Aachen ‘‘Tailor-Made
Fuels from Biomass’’ for financial support and the Alexander von
Humboldt Foundation for a fellowship to L.M.
18 Hydrosilylation experiments were performed in [D8]THF and C6D6.
Catalyst 2a does not show any activity in C6D6.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 2311--2314 | 2313