10.1002/ejoc.202000317
European Journal of Organic Chemistry
COMMUNICATION
Rev. 2016, 308, 131-190 ; c) J. Wencel-Delord, A. Panossian, F. R.
Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44 (11), 3418-3430; d) G.
Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Comm. 2019, 55, 8514-8523.
[18] a) H. J. Reich, Chem. Rev. 2013, 113, 7130-7178 ; b) E. Carl, D. Stalke
in Lithium compounds in organic synthesis : from fundamentals to
Applications, (Eds. : R ; Luisi, V. Capriati), Wiley-VCH, Weinheim, 2014,
pp 1-32.
[6]
The amount of transition-metal residues in pharmaceutical products is
strictly regulated. See the ICH Guideline Q3D on elemental impurities;
[19] Y. Asano, A. Iida, K. Tomioka, Chem. Pharm. Bull. 1998, 46, 184-186.
[20] M. Shindo, K. Koga, K. Tomioka, J. Org. Chem. 1998, 63, 9351-9357.
[21] For a discussion on the stereocontrol in L1-mediated asymmetric
conjugate addition of lithium reagents to ,-unsaturated carbonyl
compounds, see K. Nishimura, N. Fukuyama, M. Yamashita, T.
Sumiyoshi, Y. Yamamoto, K.-i. Yamada, K. Tomioka, Synthesis 2015,
47, 2256-2264 and references cited herein.
Step
guideline/international-conference-harmonisation-technical-
requirements-registration-pharmaceuticals-human-use_en-32.pdf
accessed on February 25, 2020.
[7]
[8]
a) J. Magano in Process chemistry: Case Studies From the
Pharmaceutical Industry, (Eds.: J. Magano, J. R. Dunetz), Wiley-VCH,
Weinheim, 2013, pp 313–356 ; b) J. Magano, J. R. Dunetz, Chem. Rev.
2011, 111, 2177-2250.
[22] The L1-mediated SNAr reaction of hindered naphthylimines with 1-
naphthyllithium led to 95:5 er, see ref 13. The L1-mediated SNAr reaction
of hindered naphthoates with 1-naphthyllithium led to 76:24 er, see ref
14. The atropodiastereoselective SNAr reaction using 1-
naphthylmagnesium bromide and a naphthyl derivative activated by a
chiral oxazoline gave a 87:13 dr, see ref 11. The atropostereoselective
a) R. Aissaoui, A. Nourry, A. Coquel, T. T. H. Dao, A. Derdour, J.-J.
Helesbeux, O. Duval, A.-S. Castanet, J. Mortier, J. Org. Chem. 2012, 77,
718-724 ; b) J. Mortier, A.-S. Castanet, A. Nourry, M. Belaud-Rotureau
WO2011101604A1, 2011 ; c) J. Mortier, A.-S. Castanet, M. Belaud-
Rotureau WO2011101599A1, 2011.
SNAr reaction using 1-naphthylmagnesium bromide and
a
[9]
a) M. Belaud-Rotureau, T. T. Le, T. H. T. Phan, T. H. Nguyen, R.
Aissaoui, F. Gohier, A. Derdour, A. Nourry, A.-S. Castanet, K. P. P.
Nguyen, J. Mortier, Org. Lett. 2010, 12, 2406-2409; b) M. Belaud-
Rotureau, A.-S. Castanet, T. H Nguyen, J. Mortier, Aust. J. Chem. 2016,
69, 307-313.
naphthyloxazoline bearing a chiral menthoxy leaving group gave a
83.5:16.5 er, see ,ref 12. The atropodiastereoselective SNAr reaction
using 1-naphthylmagnesium bromide and a chiral naphthoate bearing a
chiral menthoxy leaving group gave a 86:12 dr, see T. Suzuki, H. Hotta,
T. Hattori, S. Miyano, Chem. Lett. 1990, 19, 807-810.
[10] A.-S. Castanet, A. Boussonnière, J. Mortier in Arene Chemistry
Reaction : Mechanism and Methods for Aromatic Compounds, (Ed. : J.
Mortier), John Wiley & Sons, Hoboken, 2016, pp. 195–217.
[11] a) A. I. Meyers, T. D. Nelson, H. Moorlag, D. J. Rawson, A. Meier,
Tetrahedron 2004, 60, 4459-4473 ; J. Mortier, Curr. Org. Chem. 2011,
15, 2413-2437.
[23] J.-C. Kizirian, Chem. Rev. 2008, 108, 140-205.
[24] a) J.-C. Kizirian, J.-C. Caille, A. Alexakis, Tetrahedron Lett. 2003, 44,
8893-8895; b) S. Gille, N. Cabello, J.-C. Kizirian, A. Alexakis,
Tetrahedron: Asymmetry 2006, 17, 1045-1047.
[25] It has been reported that the choice of the ligand can enable control of
1,2- vs 1,4-additions of organolithium reagents to some ,-unsaturated
carbonyl substrates. See Y. S. Park, G. A. Weisenburger, P. Beak, J.
Am. Chem. Soc. 1997, 119, 10537-10538.
[12] J. M. Wilson, D. J. Cram, J. Org. Chem. 1984, 49, 4930-4943.
[13] M. Shindo, K. Koga, K. Tomioka, J. Am. Chem. Soc. 1992, 114, 8732-
8733.
[26]
A. Chatterjee, M. Sasikumar, N. N. Joshi, Synth. Comm. 2007, 37, 1727-
[14] M. Shindo, Y. Yamamoto, K.-I. Yamada, K. Tomioka, Chem. Pharm. Bull.
2009, 57, 752-754.
1733.
[27] The absolute configuration of 4 was assigned by []D comparison with
reported data. The absolute configuration of 6 was determined by
conversion to (1-(o-tolyl)naphthalen-2-yl)methanol and comparison of its
optical rotation to reported data. The absolute configuration of biaryls 5
and 7 are tentatively assigned as shown in scheme 3 on the assumption
that the SNAr reaction with (1-methylnaphthalen-2-yl)lithium and (2-
isopropylphenyl)lithium proceeds with the same sense of stereoinduction
as does the SNAr reaction with 1-naphthyllithium 2, phenanthren-9-
yllithium and o-tolyllithium.
[15] F. Amiot, L. Cointeaux, E. Jan Silve, A. Alexakis, Tetrahedron 2004, 60,
8221-8231.
[16] a) K. J. Singh, A. C. Hoepker, D. B. Collum, J. Am. Chem. Soc. 2008,
130, 18008-18017 ; b) E. Hevia, R. E. Mulvey, Angew. Chem., Int. Ed.
Engl. 2011, 50, 6448-6450.
[17] a) T. L. Rathman, W. F. Bailey, Org. Process Res. Dev. 2008, 13, 144-
151 ; b) F. Xu, R. D. Tillyer, D. M. Tschaen, E. J. J. Grabowski, P. J.
Reider, Tetrahedron: Asymmetry 1998, 9, 1651-1655 ; c) B. Lecachey,
H. Oulyadi, P. Lameiras, A. Harrison-Marchand, H. Gérard, J.
Maddaluno, J. Org. Chem. 2010, 75, 5976-5983 and references cited
therein.
[28] L. Lin, S. Fukagawa, D. Sekine, E. Tomita, T. Yoshino, S. Matsunaga,
Angew. Chem., Int. Ed. Engl. 2018, 57, 12048-12052.
This article is protected by copyright. All rights reserved.